储能科学与技术 ›› 2022, Vol. 11 ›› Issue (4): 1246-1263.doi: 10.19799/j.cnki.2095-4239.2022.0009
收稿日期:
2022-01-05
修回日期:
2022-01-20
出版日期:
2022-04-05
发布日期:
2022-04-11
通讯作者:
杨正金
E-mail:pengkang@ustc.edu.cn;yangzj09@ustc.edu.cn
作者简介:
彭康(1993—),男,博士,从事水系有机液流电池研究,E-mail:基金资助:
Kang PENG(), Junmin LIU, Gonggen TANG, Zhengjin YANG(), Tongwen XU
Received:
2022-01-05
Revised:
2022-01-20
Online:
2022-04-05
Published:
2022-04-11
Contact:
Zhengjin YANG
E-mail:pengkang@ustc.edu.cn;yangzj09@ustc.edu.cn
摘要:
水系有机液流电池作为大规模储能技术,在实现可再生能源高效利用方面展现出良好的应用潜力。本文结合水系有机液流电池研究现状,重点围绕能量密度、功率密度、效率和循环寿命四个重要性能参数对水系有机液流电池电化学活性分子进行综述,阐明了电化学活性分子溶解度、电势、电化学反应转移电子数及速率、尺寸、化学稳定性等对水系有机液流电池性能的影响。通过与磷酸铁锂电池、铅碳电池、水系全钒液流电池等技术对比,展望水系有机液流电池发展前景,认为能量密度≥30 W·h/L,最大放电功率密度≥300 mW/cm2,能量效率≥80%,循环容量衰减≤0.05%/d的水系有机液流电池有望参与长时储能市场竞争。
中图分类号:
彭康, 刘俊敏, 唐珙根, 杨正金, 徐铜文. 水系有机液流电池电化学活性分子研究现状及展望[J]. 储能科学与技术, 2022, 11(4): 1246-1263.
Kang PENG, Junmin LIU, Gonggen TANG, Zhengjin YANG, Tongwen XU. Status and prospects of organic eletroactive species for aqueous organic redox flow batteries[J]. Energy Storage Science and Technology, 2022, 11(4): 1246-1263.
1 | MCGLADE C, EKINS P. The geographical distribution of fossil fuels unused when limiting global warming to 2 ℃[J]. Nature, 2015, 517: 187 -190 . |
2 | ERICKSON P, LAZARUS M, PIGGOT G. Limiting fossil fuel production as the next big step in climate policy[J]. Nature Climate Change, 2018, 8: 1037 -1043 . |
3 | HAEGEL N M, ATWATER H J, BARNES T, et al. Terawatt-scale photovoltaics: transform global energy[J]. Science, 2019, 364(6443): 836-838. |
4 | RINNE E, HOLTTINEN H, KIVILUOMA J, et al. Effects of turbine technology and land use on wind power resource potential[J]. Nature Energy, 2018, 3 (6 ): 494 -500. |
5 | LIU K, LIU Y Y, LIN D C, et al. Materials for lithium-ion battery safety[J]. Science Advances, 2018, 4(6): doi: 10.1126/sciadv.aas9820. |
6 | PARK M, RYU J, WANG W, et al. Material design and engineering of next-generation flow-battery technologies[J]. Nature Reviews Materials, 2017, 2: doi:10.1038/natrevmats.2016.80. |
7 | SINGH V, KIM S, KANG J, et al. Aqueous organic redox flow batteries[J]. Nano Research, 2019, 12(9): 1988-2001. |
8 | CAO J Y, TIAN J Y, XU J, et al. Organic flow batteries: Recent progress and perspectives[J]. Energy & Fuels, 2020, 34(11): 13384-13411. |
9 | LI Z J, LU Y C. Material design of aqueous redox flow batteries: Fundamental challenges and mitigation strategies[J]. Advanced Materials, 2020, 32(47): doi: 10.1002/adma.202002132. |
10 | KWON G, KO Y, KIM Y, et al. Versatile redox-active organic materials for rechargeable energy storage[J]. Accounts of Chemical Research, 2021, 54(23): 4423-4433. |
11 | FANG X T, LI Z G, ZHAO Y Y, et al. Multielectron organic redoxmers for energy-dense redox flow batteries[J]. ACS Materials Letters, 2022, 4(2): 277-306. |
12 | WINSBERG J, HAGEMANN T, JANOSCHKA T, et al. Redox-flow batteries: from metals to organic redox-active materials[J]. Angewandte Chemie (International Ed in English), 2017, 56(3): 686-711. |
13 | YANG Z J, GUO R, MALPASS-EVANS R, et al. Highly conductive anion-exchange membranes from microporous tröger's base polymers[J]. Angewandte Chemie (International Ed in English), 2016, 55(38): 11499-11502. |
14 | ZUO P P, LI Y Y, WANG A Q, et al. Sulfonated microporous polymer membranes with fast and selective ion transport for electrochemical energy conversion and storage[J]. Angewandte Chemie (International Ed in English), 2020, 59(24): 9564-9573. |
15 | JANOSCHKA T, MARTIN N, MARTIN U, et al. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials[J]. Nature, 2015, 527: 78 -81. |
16 | LIU T B, WEI X L, NIE Z M, et al. A total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4-HO-TEMPO catholyte[J]. Advanced Energy Materials, 2016, 6(3): doi: 10.1002/aenm.201501449. |
17 | JANOSCHKA T, MARTIN N, HAGER M D, et al. An aqueous redox-flow battery with high capacity and power: The TEMPTMA/MV system[J]. Angewandte Chemie (International Ed in English), 2016, 55(46): 14427-14430. |
18 | LIU Y H, GOULET M A, TONG L C, et al. A long-lifetime all-organic aqueous flow battery utilizing TMAP-TEMPO radical[J]. Chem, 2019, 5(7): 1861-1870. |
19 | HU B, DEBRULER C, RHODES Z, et al. Long-cycling aqueous organic redox flow battery (AORFB) toward sustainable and safe energy storage[J]. Journal of the American Chemical Society, 2017, 139(3): 1207-1214. |
20 | CHEN Q R, LI Y Y, LIU Y H, et al. Designer ferrocene catholyte for aqueous organic flow batteries[J]. ChemSusChem, 2021, 14(5): 1295-1301. |
21 | BEH E S, DE PORCELLINIS D, GRACIA R L, et al. A neutral pH aqueous organic-organometallic redox flow battery with extremely high capacity retention[J]. ACS Energy Letters, 2017, 2(3): 639-644. |
22 | ZHANG C K, NIU Z H, PENG S S, et al. Phenothiazine-based organic catholyte for high-capacity and long-life aqueous redox flow batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2019, 31(24): doi: 10.1002/adma.201901052. |
23 | HUSKINSON B, MARSHAK M P", SUH C, et al. A metal-free organic-inorganic aqueous flow battery[J]. Nature, 2014, 505: 195 -198 . |
24 | LIN K X, CHEN Q, GERHARDT M R, et al. Alkaline quinone flow battery[J]. Science, 2015, 349: 1529-1532. |
25 | YANG Z J, TONG L C, TABOR D P, et al. Alkaline benzoquinone aqueous flow battery for large-scale storage of electrical energy[J]. Advanced Energy Materials, 2018, 8(8): doi:10.1002/aenm.201702056. |
26 | KWABI D G, LIN K X, JI Y L, et al. Alkaline quinone flow battery with long lifetime at pH 12[J]. Joule, 2018, 2(9): 1894-1906. |
27 | HU B, LUO J, HU M W, et al. A pH-neutral, metal-free aqueous organic redox flow battery employing an ammonium anthraquinone anolyte[J]. Angewandte Chemie (International Ed in English), 2019, 58(46): 16629-16636. |
28 | DEBRULER C, HU B, MOSS J, et al. Designer two-electron storage viologen anolyte materials for neutral aqueous organic redox flow batteries[J]. Chem, 2017, 3(6): 961-978. |
29 | HU B, TANG Y J, LUO J, et al. Improved radical stability of viologen anolytes in aqueous organic redox flow batteries[J]. Chemical Communications (Cambridge, England), 2018, 54(50): 6871-6874. |
30 | LIU Y H, LI Y Y, ZUO P P, et al. Screening viologen derivatives for neutral aqueous organic redox flow batteries[J]. ChemSusChem, 2020, 13(9): 2245-2249. |
31 | HUANG J H, HU S Z, YUAN X Z, et al. Radical stabilization of a tripyridinium-triazine molecule enables reversible storage of multiple electrons[J]. Angewandte Chemie (International Ed in English), 2021, 60(38): 20921-20925. |
32 | HUANG M B, HU S Z, YUAN X Z, et al. Five-membered-heterocycle bridged viologen with high voltage and superior stability for flow battery[J]. Advanced Functional Materials, 2022: doi:10.1002/adfm.202111744. |
33 | LUO J, HU B, DEBRULER C, et al. A π-conjugation extended viologen as a two-electron storage anolyte for total organic aqueous redox flow batteries[J]. Angewandte Chemie (International Ed in English), 2018, 57(1): 231-235. |
34 | HU S Z, LI T Y, HUANG M B, et al. Phenylene-bridged bispyridinium with high capacity and stability for aqueous flow batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2021, 33(7): doi: 10.1002/adma.202005839. |
35 | LIANG Y, JING Y, GHEYTANI S, et al. Universal quinone electrodes for long cycle life aqueous rechargeable batteries[J]. Nature Materials, 2017, 16 (8 ): 841 -848. |
36 | ZHAO Q, ZHU Z, CHEN J. Molecular engineering with organic carbonyl electrode materials for advanced stationary and redox flow rechargeable batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2017, 29(48): doi: 10.1002/adma.201607007. |
37 | HAN C P, LI H F, SHI R Y, et al. Organic quinones towards advanced electrochemical energy storage: Recent advances and challenges[J]. Journal of Materials Chemistry A, 2019, 7(41): 23378-23415. |
38 | KWON G, LEE K, LEE M H, et al. Bio-inspired molecular redesign of a multi-redox catholyte for high-energy non-aqueous organic redox flow batteries[J]. Chem, 2019, 5(10): 2642-2656. |
39 | CHAI J C, WANG X, LASHGARI A, et al. A pH-neutral, aqueous redox flow battery with a 3600-cycle lifetime: Micellization-enabled high stability and crossover suppression[J]. ChemSusChem, 2020, 13(16): 4069-4077. |
40 | GERKEN J B, ANSON C W, PREGER Y, et al. Comparison of quinone-based catholytes for aqueous redox flow batteries and demonstration of long-term stability with tetrasubstituted quinones[J]. Advanced Energy Materials, 2020, 10(20): doi:10.1002/aenm. 202000340. |
41 | ROMADINA E I, KOMAROV D S, STEVENSON K J, et al. New phenazine based anolyte material for high voltage organic redox flow batteries[J]. Chemical Communications (Cambridge, England), 2021, 57(24): 2986-2989. |
42 | XU J C, PANG S, WANG X Y, et al. Ultrastable aqueous phenazine flow batteries with high capacity operated at elevated temperatures[J]. Joule, 2021, 5(9): 2437-2449. |
43 | HUANG Z F, KAY C W M, KUTTICH B, et al. An "interaction-mediating" strategy towards enhanced solubility and redox properties of organics for aqueous flow batteries[J]. Nano Energy, 2020, 69: doi: 10.1016/j.nanoen.2020.104464. |
44 | ZHANG S Z, WANG G M, LU Y X, et al. The interactions between imidazolium-based ionic liquids and stable nitroxide radical species: a theoretical study[J]. The Journal of Physical Chemistry A, 2016, 120(30): 6089-6102. |
45 | DING Y, ZHANG C K, ZHANG L Y, et al. Insights into hydrotropic solubilization for hybrid ion redox flow batteries[J]. ACS Energy Letters, 2018, 3(11): 2641-2648. |
46 | ZHANG C K, ZHANG L Y, YU G H. Eutectic electrolytes as a promising platform for next-generation electrochemical energy storage[J]. Accounts of Chemical Research, 2020, 53(8): 1648-1659. |
47 | ZHANG C K, ZHANG L Y, DING Y, et al. Eutectic electrolytes for high-energy-density redox flow batteries[J]. ACS Energy Letters, 2018, 3(12): 2875-2883. |
48 | ZHANG C K, QIAN Y M, DING Y, et al. Biredox eutectic electrolytes derived from organic redox-active molecules: High-energy storage systems[J]. Angewandte Chemie (International Ed in English), 2019, 58(21): 7045-7050. |
49 | ZHOU M Y, CHEN Y, SALLA M, et al. Single-molecule redox-targeting reactions for a pH-neutral aqueous organic redox flow battery[J]. Angewandte Chemie (International Ed in English), 2020, 59(34): 14286-14291. |
50 | CHEN Y, ZHOU M Y, XIA Y H, et al. A stable and high-capacity redox targeting-based electrolyte for aqueous flow batteries[J]. Joule, 2019, 3(9): 2255-2267. |
51 | CHEN R Y. Toward high-voltage, energy-dense, and durable aqueous organic redox flow batteries: role of the supporting electrolytes[J]. ChemElectroChem, 2019, 6(3): 603-612. |
52 | SUN P, LIU Y H, LI Y Y, et al. 110th anniversary: Unleashing the full potential of quinones for high performance aqueous organic flow battery[J]. Industrial & Engineering Chemistry Research, 2019, 58(10): 3994-3999. |
53 | HU B, SEEFELDT C, DEBRULER C, et al. Boosting the energy efficiency and power performance of neutral aqueous organic redox flow batteries[J]. Journal of Materials Chemistry A, 2017, 5(42): 22137-22145. |
54 | XIAO Y, HU L, GAO L, et al. Enabling high Anion-selective conductivity in membrane for high-performance neutral organic based aqueous redox flow battery by microstructure design[J]. Chemical Engineering Journal, 2022, 432: doi:10.1016/j.cej. 2021.134268. |
55 | KWABI D G, JI Y L, AZIZ M J. Electrolyte lifetime in aqueous organic redox flow batteries: A critical review[J]. Chemical Reviews, 2020, 120(14): 6467-6489. |
56 | JI Y L, GOULET M A, POLLACK D A, et al. A phosphonate-functionalized quinone redox flow battery at near-neutral pH with record capacity retention rate[J]. Advanced Energy Materials, 2019, 9(12): doi: 10.1002/aenm.201900039. |
57 | WU M, JING Y, WONG A A, et al. Extremely stable anthraquinone negolytes synthesized from common precursors[J]. Chem, 2020, 6(6): 1432-1442. |
58 | GOULET M A, TONG L C, POLLACK D A, et al. Extending the lifetime of organic flow batteries via redox state management[J]. Journal of the American Chemical Society, 2019, 141(20): 8014-8019. |
59 | HU B, HU M W, LUO J, et al. A stable, low permeable TEMPO catholyte for aqueous total organic redox flow batteries[J]. Advanced Energy Materials, 2021: doi: 10.1002/aenm.202102577. |
60 | LUO J, HU B, HU M W, et al. Status and prospects of organic redox flow batteries toward sustainable energy storage[J]. ACS Energy Letters, 2019, 4(9): 2220-2240. |
61 | TAN R, WANG A, MALPASS-EVANS R, et al. Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage[J]. Nature Materials, 2020, 19(2): 195-202. |
[1] | 何凤荣, 张啟文, 郭德超, 郭义敏, 郭孝东. 电极结构对(NCM+AC)/HC混合型电容器电性能的影响[J]. 储能科学与技术, 2022, 11(7): 2051-2058. |
[2] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[3] | 苏要港, 吴晓南, 廖柏睿, 李爽. 耦合LNG冷能及ORC的新型液化空气储能系统分析[J]. 储能科学与技术, 2022, 11(6): 1996-2006. |
[4] | 鲁恒飞, 徐兴无, 凌生斌, 申永宽. 一款软包电池模组开发与应用[J]. 储能科学与技术, 2022, 11(5): 1468-1474. |
[5] | 张策, 李思吾, 谢佳. 合金型负极预锂化技术研究进展[J]. 储能科学与技术, 2022, 11(5): 1383-1400. |
[6] | 田玉玉, 刘静, 宋雪峰, 邱羽, 赵丽萍, 张鹏, 孙燕亭, 高濂. PPy-MoS2 多孔网络柔性电极的电化学行为动力学分析[J]. 储能科学与技术, 2022, 11(4): 1141-1148. |
[7] | 佟永丽, 武祥. 金属有机框架衍生的Co3O4 电极材料及其电化学性能[J]. 储能科学与技术, 2022, 11(3): 1035-1043. |
[8] | 徐晓斌, 徐业飞, 张恒运, 朱顺良, 王海峰. 风冷电池模组热性能及成组效率的多目标优化[J]. 储能科学与技术, 2022, 11(2): 553-562. |
[9] | 靳文婷, 廖满生, 黄骥, 魏子栋. 车用高能量密度锂离子电池技术发展态势[J]. 储能科学与技术, 2022, 11(1): 350-358. |
[10] | 周升辉, 何阳, 陈海生, 徐玉杰, 邓建强. 喷射器强化压缩空气储能充能过程[J]. 储能科学与技术, 2021, 10(5): 1503-1513. |
[11] | 何子睿, 齐伟, 宋锦涛, 崔双双, 李红. 耦合液化天然气的液化空气储能系统热力学分析[J]. 储能科学与技术, 2021, 10(5): 1589-1596. |
[12] | 张兴, 阮鹏, 张柳丽, 田刚领, 祝保红. 飞轮储能装置性能测试[J]. 储能科学与技术, 2021, 10(5): 1674-1678. |
[13] | 吕腾, 叶子祥, 李泾, 储富强, 林本才. 烷基磺酸蒽醌电解质的合成及其在液流电池中的应用[J]. 储能科学与技术, 2021, 10(4): 1317-1324. |
[14] | 衡永丽, 谷振一, 郭晋芝, 吴兴隆. Na3V2(PO4)3@C用作水系锌离子电池正极材料的研究[J]. 储能科学与技术, 2021, 10(3): 938-944. |
[15] | 杨民安, 陈宁, 王博, 张乾, 陈敬沛, 赵海雷, 李福燊. 锂离子电池正极材料循环稳定性的基因规律[J]. 储能科学与技术, 2021, 10(2): 462-469. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||