1 |
YE Z C, QIU L, YANG W, et al. Nickel-rich layered cathode materials for lithium-ion batteries[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2021, 27(13): 4249-4269.
|
2 |
SUN Y K, MYUNG S T, PARK B C, et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nature Materials, 2009, 8(4): 320-324.
|
3 |
SUN Y K, CHEN Z H, NOH H J, et al. Nanostructured high-energy cathode materials for advanced lithium batteries[J]. Nature Materials, 2012, 11(11): 942-947.
|
4 |
SUN H H, KIM U H, PARK J H, et al. Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries[J]. Nature Communications, 2021, 12: doi: 10.1038/s41467-021-26815-6.
|
5 |
MYUNG S T, MAGLIA F, PARK K J, et al. Nickel-rich layered cathode materials for automotive lithium-ion batteries: Achievements and perspectives[J]. ACS Energy Letters, 2017, 2(1): 196-223.
|
6 |
KIM J, LEE H, CHA H, et al. Prospect and reality of Ni-rich cathode for commercialization[J]. Advanced Energy Materials, 2018, 8(6): doi: 10.1002/aenm.201702028.
|
7 |
LU L G, HAN X B, LI J Q, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288.
|
8 |
ZUBI G, DUFO-LÓPEZ R, CARVALHO M, et al. The lithium-ion battery: State of the art and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2018, 89: 292-308.
|
9 |
KIM U H, PARK J H, AISHOVA A, et al. Microstructure engineered Ni-rich layered cathode for electric vehicle batteries[J]. Advanced Energy Materials, 2021, 11(25): doi: 10.1002/aenm.202100884.
|
10 |
SONG L B, DU J L, XIAO Z L, et al. Research progress on the surface of high-nickel nickel-cobalt-Manganese ternary cathode materials: A mini review[J]. Frontiers in Chemistry, 2020, 8: doi: 10.3389/fchem.2020.00761.
|
11 |
陈绍军, 丁波, 丁安莉, 等. Na+掺杂对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料科学与工程学报, 2021, 39(5): 843-846.
|
|
CHEN S J, DING B, DING A L, et al. Effect of Na+ doping on electrochemical properties of Lini0.8Co0.1Mn0.1O2 improved by doping sodium ions[J]. Journal of Materials Science and Engineering, 2021, 39(5): 843-846.
|
12 |
LI M, LU J. Cobalt in lithium-ion batteries[J]. Science, 2020, 367(6481): 979-980.
|
13 |
YU H J, QIAN Y M, OTANI M, et al. Study of the lithium/nickel ions exchange in the layered LiNi0.42Mn0.42Co0.16O2 cathode material for lithium ion batteries: Experimental and first-principles calculations[J]. Energy & Environmental Science, 2014, 7(3): 1068-1078.
|
14 |
GILBERT J A, SHKROB I A, ABRAHAM D P. Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in lithium-ion full cells[J]. Journal of the Electrochemical Society, 2017, 164(2): doi: 10.1149/2.1111702jes.
|
15 |
HUANG B, LI X H, WANG Z X, et al. Synthesis of Mg-doped LiNi0.8Co0.15Al0.05O2 oxide and its electrochemical behavior in high-voltage lithium-ion batteries[J]. Ceramics International, 2014, 40(8): 13223-13230.
|
16 |
SUSAI F A, KOVACHEVA D, CHAKRABORTY A, et al. Improving performance of LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium-ion batteries by doping with molybdenum-ions: Theoretical and experimental studies[J]. ACS Applied Energy Materials, 2019, 2(6): 4521-4534.
|
17 |
ZHANG D K, LIU Y, WU L, et al. Effect of Ti ion doping on electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material[J]. Electrochimica Acta, 2019, 328: doi: 10.1016/j.electacta.2019.135086.
|
18 |
HE T, LU Y, SU Y F, et al. Sufficient utilization of zirconium ions to improve the structure and surface properties of nickel-rich cathode materials for lithium-ion batteries[J]. ChemSusChem, 2018, 11(10): 1639-1648.
|
19 |
KIM U H, JUN D W, PARK K J, et al. Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries[J]. Energy & Environmental Science, 2018, 11(5): 1271-1279.
|
20 |
LEI Y K, AI J J, YANG S, et al. Nb-doping in LiNi0.8Co0.1Mn0.1O2 cathode material: Effect on the cycling stability and voltage decay at high rates[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97: 255-263.
|
21 |
LI L J, WANG Z X, LIU Q C, et al. Effects of chromium on the structural, surface chemistry and electrochemical of layered LiNi0.8- xCo0.1Mn0.1CrxO2[J]. Electrochimica Acta, 2012, 77: 89-96.
|
22 |
ZHANG M Y, WANG C Y, ZHANG J K, et al. Preparation and electrochemical characterization of La and Al Co-doped NCM811 cathode materials[J]. ACS Omega, 2021, 6(25): 16465-16471.
|
23 |
LIU X L, WANG S, WANG L, et al. Stabilizing the high-voltage cycle performance of LiNi0.8Co0.1Mn0.1O2 cathode material by Mg doping[J]. Journal of Power Sources, 2019, 438: doi: 10.1016/j.jpowsour.2019.227017.
|
24 |
HUANG Z J, WANG Z X, GUO H J, et al. Influence of Mg2+ doping on the structure and electrochemical performances of layered LiNi0.6Co0.2- xMn0.2MgxO2 cathode materials[J]. Journal of Alloys and Compounds, 2016, 671: 479-485.
|
25 |
SATTAR T, LEE S H, SIM S J, et al. Effect of Mg-doping on the electrochemical performance of LiNi0.84Co0.11Mn0.05O2 cathode for lithium ion batteries[J]. International Journal of Hydrogen Energy, 2020, 45(38): 19567-19576.
|
26 |
赵航, 魏闯, 康鑫, 等. 锂离子电池三元正极材料的研究进展[J]. 中国陶瓷, 2020, 56(5): 10-15.
|
|
ZHAO H, WEI C, KANG X, et al. Research progress of ternary cathode materials for lithium ion battery[J]. China Ceramics, 2020, 56(5): 10-15.
|
27 |
LIU B S, SUI X L, ZHANG S H, et al. Investigation on electrochemical performance of LiNi0.8Co0.15Al0.05O2 coated by heterogeneous layer of TiO2[J]. Journal of Alloys and Compounds, 2018, 739: 961-971.
|
28 |
GAN Z G, HU G R, PENG Z D, et al. Surface modification of LiNi0.8Co0.1Mn0.1O2 by WO3 as a cathode material for LIB[J]. Applied Surface Science, 2019, 481: 1228-1238.
|
29 |
YAO L, LIANG F Q, JIN J, et al. Improved electrochemical property of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode via in situ ZrO2 coating for high energy density lithium ion batteries[J]. Chemical Engineering Journal, 2020, 389: doi: 10.1016/j.cej.2020.124403.
|
30 |
NEUDECK S, STRAUSS F, GARCIA G, et al. Room temperature, liquid-phase Al2O3 surface coating approach for Ni-rich layered oxide cathode material[J]. Chemical Communications (Cambridge, England), 2019, 55(15): 2174-2177.
|
31 |
LI Y J, ZHU J, DENG S Y, et al. Towards superior cyclability of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium ion batteries via synergetic effects of Sb modification[J]. Journal of Alloys and Compounds, 2019, 798: 93-103.
|
32 |
HEMMELMANN H, DINTER J K, ELM M T. Thin film NCM cathodes as model systems to assess the influence of coating layers on the electrochemical performance of lithium ion batteries[J]. Advanced Materials Interfaces, 2021, 8(9): doi: 10.1002/admi.202002074.
|
33 |
ZHAO L N, CHEN G R, WENG Y H, et al. Precise Al2O3 coating on LiNi0.5Co0.2Mn0.3O2 by atomic layer deposition restrains the shuttle effect of transition metals in Li-ion capacitors[J]. Chemical Engineering Journal, 2020, 401: doi: 10.1016/j.cej.2020.126138.
|
34 |
GAO S, WANG L J, ZHOU C Y, et al. In-situ construction protective layer and phosphate doping synergistically improve the long-term cycle stability of LiNi0.6Co0.1Mn0.3O2[J]. Chemical Engineering Journal, 2021, 426: doi: 10.1016/j.cej.2021.131359.
|
35 |
LI Y C, XIANG W, XIAO Y, et al. Synergy of doping and coating induced heterogeneous structure and concentration gradient in Ni-rich cathode for enhanced electrochemical performance[J]. Journal of Power Sources, 2019, 423: 144-151.
|
36 |
YU H F, ZHU H W, YANG Z F, et al. Bulk Mg-doping and surface polypyrrole-coating enable high-rate and long-life for Ni-rich layered cathodes[J]. Chemical Engineering Journal, 2021, 412: doi: 10.1016/j.cej.2021.128625.
|
37 |
YANG G C, PAN K, LAI F Y, et al. Integrated co-modification of PO 4 3 - polyanion doping and Li2TiO3 coating for Ni-rich layered LiNi0.6Co0.2Mn0.2O2 cathode material of Lithium-Ion batteries[J]. Chemical Engineering Journal, 2021, 421: doi: 10.1016/j.cej.2021.129964.
|
38 |
SHEN J X, DENG D, LI X, et al. Realizing ultrahigh-voltage performance of single-crystalline LiNi0.55Co0.15Mn0.3O2 cathode materials by simultaneous Zr-doping and B2O3-coating[J]. Journal of Alloys and Compounds, 2022, 903: doi: 10.1016/j.jallcom. 2022.163999.
|
39 |
倪闯将, 刘亚飞, 陈彦彬, 等. 镍钴锰三元材料的结构及改性研究进展[J]. 电源技术, 2021, 45(1): 123-126.
|
|
NI C J, LIU Y F, CHEN Y B, et al. Research progress of structure and modification of Li(NixCoyMnz)O2 ternary materials[J]. Chinese Journal of Power Sources, 2021, 45(1): 123-126.
|
40 |
HUANG B, WANG M, ZHAO Z Y, et al. Effects of the strong oxidant treatment of precursor on the electrochemical properties of LiNi0.8Mn0.1Co0.1O2 for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2019, 810: doi: 10.1016/j.jallcom.2019.151800.
|
41 |
芦志刚, 李延伟, 姜吉琼, 等. 不同锂源对高温固相法制备NCM811正极材料储锂性能的影响[J]. 稀有金属材料与工程, 2021, 50(10): 3757-3764.
|
|
LU Z G, LI Y W, JIANG J Q, et al. Influence of lithium sources on the lithium ion storage performance of NCM811 cathode materials prepared by high-temperature solid-state reaction method[J]. Rare Metal Materials and Engineering, 2021, 50(10): 3757-3764.
|
42 |
ZHANG R, WANG C Y, ZOU P C, et al. Compositionally complex doping for zero-strain zero-cobalt layered cathodes[J]. Nature, 2022, 610(7930): 67-73.
|
43 |
HUANG J, FANG X, WU Y N, et al. Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 by surface modification with lithium-active MoO3[J]. Journal of Electroanalytical Chemistry, 2018, 823: 359-367.
|
44 |
LV Y T, CHENG X, QIANG W J, et al. Improved electrochemical performances of Ni-rich LiNi0.83Co0.12Mn0.05O2 by Mg-doping[J]. Journal of Power Sources, 2020, 450: doi: 10.1016/j.jpowsour. 2020.227718.
|
45 |
LIU J, ZOU Z G, ZHONG S L, et al. Improved electrochemical performance of magnesium-doped LiNi0.8- xMgxCo0.1Mn0.1O2 by CTAB-assisted solvothermal and calcining method[J]. Ionics, 2021, 27(4): 1501-1509.
|
46 |
ROITZHEIM C, KUO L Y, SOHN Y J, et al. Boron in Ni-rich NCM811 cathode material: Impact on atomic and microscale properties[J]. ACS Applied Energy Materials, 2022, 5(1): 524-538.
|
47 |
YAN W W, YANG S Y, HUANG Y Y, et al. A review on doping/coating of nickel-rich cathode materials for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 819: doi: 10.1016/j.jallcom.2019.153048.
|
48 |
ZAHRA A, KONG X Z, EKATERINA F, et al. Extensive comparison of doping and coating strategies for Ni-rich positive electrode materials[J]. Journal of Power Sources, 2022, 540: doi: 10.1016/j.jpowsour.2022.231633.
|
49 |
LI C, ZHANG H P, FU L J, et al. Cathode materials modified by surface coating for lithium ion batteries[J]. Electrochimica Acta, 2006, 51(19): 3872-3883.
|
50 |
HUANG Z J, WANG Z X, ZHENG X B, et al. Effect of Mg doping on the structural and electrochemical performance of LiNi0.6 Co0.2Mn0.2O2 cathode materials[J]. Electrochimica Acta, 2015, 182: 795-802.
|
51 |
XI X S, FAN Y Y, LIU Y C, et al. Enhanced cyclic stability of NCM-622 cathode by Ti3+ doped TiO2 coating[J]. Journal of Alloys and Compounds, 2021, 872: doi: 10.1016/j.jallcom.2021.159664.
|
52 |
RENFREW S E, MCCLOSKEY B D. Residual lithium carbonate predominantly accounts for first cycle CO2 and CO outgassing of Li-stoichiometric and Li-rich layered transition-metal oxides[J]. Journal of the American Chemical Society, 2017, 139(49): 17853-17860.
|
53 |
BETTGE M, LI Y, SANKARAN B, et al. Improving high-capacity Li1.2Ni0.15Mn0.55Co0.1O2-based lithium-ion cells by modifiying the positive electrode with alumina[J]. Journal of Power Sources, 2013, 233: 346-357.
|