1 |
LIN M Q, WU D G, MENG J H, et al. A multi-feature-based multi-model fusion method for state of health estimation of lithium-ion batteries[J]. Journal of Power Sources, 2022, 518: doi: 10.1016/j.jpowsour.2021.230774.
|
2 |
TIAN H X, QIN P L, LI K, et al. A review of the state of health for lithium-ion batteries: Research status and suggestions[J]. Journal of Cleaner Production, 2020, 261: doi: 10.1016/j.jclepro. 2020.120813.
|
3 |
RAHIMI-EICHI H, OJHA U, BARONTI F, et al. Battery management system: An overview of its application in the smart grid and electric vehicles[J]. IEEE Industrial Electronics Magazine, 2013, 7(2): 4-16.
|
4 |
LIN C P, CABRERA J, YANG F F, et al. Battery state of health modeling and remaining useful life prediction through time series model[J]. Applied Energy, 2020, 275: doi: 10.1016/j.apenergy.2020.115338.
|
5 |
CHEN D, MENG J H, HUANG H Y, et al. An Empirical-data hybrid driven approach for remaining useful life prediction of lithium-ion batteries considering capacity diving[J]. Energy, 2022, 245: doi: 10.1016/j.energy.2022.123222.
|
6 |
LOVE C T, VIRJI M B V, ROCHELEAU R E, et al. State-of-health monitoring of 18650 4S packs with a single-point impedance diagnostic[J]. Journal of Power Sources, 2014, 266: 512-519.
|
7 |
PRADYUMNA T K, CHO K, KIM M, et al. Capacity estimation of lithium-ion batteries using convolutional neural network and impedance spectra[J]. Journal of Power Electronics, 2022, 22(5): 850-858.
|
8 |
PLETT G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs[J]. Journal of Power Sources, 2004, 134(2): 277-292.
|
9 |
WANG Y J, ZHANG C B, CHEN Z H. A method for state-of-charge estimation of LiFePO4 batteries at dynamic currents and temperatures using particle filter[J]. Journal of Power Sources, 2015, 279: 306-311.
|
10 |
YAN W Z, ZHANG B, ZHAO G Q, et al. A battery management system with a lebesgue-sampling-based extended Kalman filter[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 3227-3236.
|
11 |
TULSYAN A, TSAI Y, GOPALUNI R B, et al. State-of-charge estimation in lithium-ion batteries: A particle filter approach[J]. Journal of Power Sources, 2016, 331: 208-223.
|
12 |
LI J, ADEWUYI K, LOTFI N, et al. A single particle model with chemical/mechanical degradation physics for lithium ion battery state of health (SOH) estimation[J]. Applied Energy, 2018, 212: 1178-1190.
|
13 |
LIN H Y, KANG L Y, XIE D, et al. Online state-of-health estimation of lithium-ion battery based on incremental capacity curve and BP neural network[J]. Batteries, 2022, 8(4): doi: 10.3390/batteries8040029.
|
14 |
戴彦文, 于艾清. 基于健康特征参数的CNN-LSTM&GRU组合锂电池SOH估计[J]. 储能科学与技术, 2022, 11(5): 1641-1649.
|
|
DAI Y W, YU A Q. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation[J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649.
|
15 |
LI X Y, YUAN C G, WANG Z P. State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression[J]. Energy, 2020, 203: doi: 10.1016/j.energy.2020.117852.
|
16 |
LI H, PAN D H, CHEN C L P. Intelligent prognostics for battery health monitoring using the mean entropy and relevance vector machine[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2014, 44(7): 851-862.
|
17 |
LEWERENZ M, MARONGIU A, WARNECKE A, et al. Differential voltage analysis as a tool for analyzing inhomogeneous aging: A case study for LiFePO4|Graphite cylindrical cells[J]. Journal of Power Sources, 2017, 368: 57-67.
|
18 |
WEI J W, DONG G Z, CHEN Z H. Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5634-5643.
|
19 |
WANG Z P, YUAN C G, LI X Y. Lithium battery state-of-health estimation via differential thermal voltammetry with Gaussian process regression[J]. IEEE Transactions on Transportation Electrification, 2021, 7(1): 16-25.
|
20 |
PAN H H, LÜ Z Q, WANG H M, et al. Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine[J]. Energy, 2018, 160: 466-477.
|
21 |
LI Y, LIU K L, FOLEY A M, et al. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review[J]. Renewable and Sustainable Energy Reviews, 2019, 113: doi: 10.1016/j.rser.2019.109254.
|
22 |
LIU J, CHEN Z Q. Remaining useful life prediction of lithium-ion batteries based on health indicator and Gaussian process regression model[J]. IEEE Access, 2019, 7: 39474-39484.
|
23 |
HE Y J, SHEN J N, SHEN J F, et al. State of health estimation of lithium-ion batteries: A multiscale Gaussian process regression modeling approach[J]. AIChE Journal, 2015, 61(5): 1589-1600.
|
24 |
李放, 闵永军, 王琛, 等. 基于充电过程的锂电池SOH估计和RUL预测[J]. 储能科学与技术, 2022, 11(10): 3316-3327.
|
|
LI F, MIN Y J, WANG C, et al. State of health estimation and remaining useful life predication of lithium batteries using charging process[J]. Energy Storage Science and Technology, 2022, 11(10): 3316-3327.
|