1 |
FAIZAN M, HUSSAIN S, VIKRAMAN D, et al. MoS2@Mo2C hybrid nanostructures formation as an efficient anode material for lithium-ion batteries[J]. Journal of Materials Research and Technology, 2021, 14: 2382-2393.
|
2 |
SENTHIL C, AMUTHA S, GNANAMUTHU R, et al. Metallic 1T MoS2 overlapped nitrogen-doped carbon superstructures for enhanced sodium-ion storage[J]. Applied Surface Science, 2019, 491: 180-186.
|
3 |
JIA B R, YU Q Y, ZHAO Y Z, et al. Bamboo-like hollow tubes with MoS2/N-doped-C interfaces boost potassium-ion storage[J]. Advanced Functional Materials, 2018, 28(40): doi: 10.1002/adfm.201803409.
|
4 |
MA X X, LI N, LIU S K, et al. Pyrrolic nitrogen-doped carbon sandwiched monolayer MoS2 vertically anchored on graphene oxide for high-performance sodium-ion battery anodes[J]. Journal of Solid State Electrochemistry, 2018, 22(9): 2801-2809.
|
5 |
ZHU Z Q, TANG Y X, LV Z S, et al. Fluoroethylene carbonate enabling a robust LiF-rich solid electrolyte interphase to enhance the stability of the MoS2 anode for lithium-ion storage[J]. Angewandte Chemie (International Ed in English), 2018, 57(14): 3656-3660.
|
6 |
WU J X, CIUCCI F, KIM J K. Molybdenum disulfide based nanomaterials for rechargeable batteries[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2020, 26(29): 6296-6319.
|
7 |
XIE J R, ZHU K J, MIN J, et al. In-situ grown ultrathin MoS2 nanosheets on MoO2 hollow nanospheres to synthesize hierarchical nanostructures and its application in lithium-ion batteries[J]. Ionics, 2019, 25(4): 1487-1494.
|
8 |
LI Z Y, OTTMANN A, SUN Q, et al. Hierarchical MoS2-carbon porous nanorods towards atomic interfacial engineering for high-performance lithium storage[J]. Journal of Materials Chemistry A, 2019, 7(13): 7553-7564.
|
9 |
LONG F, CHEN Y, WU C H, et al. Unique three-dimensional hierarchical heterogeneous MoS2/graphene structures as a high-performance anode material for lithium-ion batteries[J]. Ionics, 2021, 27(5): 1977-1986.
|
10 |
CHOI M, HWANG J, SETIADI H, et al. One-pot synthesis of molybdenum disulfide-reduced graphene oxide (MoS2-RGO) composites and their high electrochemical performance as an anode in lithium ion batteries[J]. The Journal of Supercritical Fluids, 2017, 127: 81-89.
|
11 |
ZHAO Y, XU L, YAN J, et al. Facile preparation of NiFe2O4/MoS2 composite material with synergistic effect for high performance supercapacitor[J]. Journal of Alloys and Compounds, 2017, 726: 608-617.
|
12 |
QU B, SUN Y, LIU L L, et al. Ultrasmall Fe2O3 nanoparticles/MoS2 nanosheets composite as high-performance anode material for lithium ion batteries[J]. Scientific Reports, 2017, 7: doi: 10.1038/srep42772.
|
13 |
QIN S, LEI W W, LIU D, et al. Advanced N-doped mesoporous molybdenum disulfide nanosheets and the enhanced lithium-ion storage performance[J]. Journal of Materials Chemistry A, 2016, 4(4): 1440-1445.
|
14 |
WANG J C, ZHANG L Y, SUN K, et al. Improving ionic/electronic conductivity of MoS2 Li-ion anode via Manganese doping and structural optimization[J]. Chemical Engineering Journal, 2019, 372: 665-672.
|
15 |
XIA S S, WANG Y R, LIU Y, et al. Ultrathin MoS2 nanosheets tightly anchoring onto nitrogen-doped graphene for enhanced lithium storage properties[J]. Chemical Engineering Journal, 2018, 332: 431-439.
|
16 |
SHAO X J, WANG K D, PANG R, et al. Lithium intercalation in graphene/MoS2 composites: First-principles insights[J]. The Journal of Physical Chemistry C, 2015, 119(46): 25860-25867.
|
17 |
LIU Z X, GE D H, YANG P. Structure and interfacial properties investigation for ZnO/graphene interface[J]. Materials Chemistry and Physics, 2019, 229: 1-5.
|
18 |
ZHANG X E, ZHAO R F, WU Q H, et al. Petal-like MoS2 nanosheets space-confined in hollow mesoporous carbon spheres for enhanced lithium storage performance[J]. ACS Nano, 2017, 11(8): 8429-8436.
|
19 |
YOU Y, YE Y W, WEI M L, et al. Three-dimensional MoS2/rGO foams as efficient sulfur hosts for high-performance lithium-sulfur batteries[J]. Chemical Engineering Journal, 2019, 355: 671-678.
|
20 |
SUN Y M, HU X L, YU J C, et al. Morphosynthesis of a hierarchical MoO2 nanoarchitecture as a binder-free anode for lithium-ion batteries[J]. Energy & Environmental Science, 2011, 4(8): 2870-2877.
|
21 |
LIU B T, WANG S W, MO Q H, et al. Epitaxial MoS2 nanosheets on nitrogen doped graphite foam as a 3D electrode for highly efficient electrochemical hydrogen evolution[J]. Electrochimica Acta, 2018, 292: 407-418.
|
22 |
WAN Z M, SHAO J, YUN J J, et al. Core-shell structure of hierarchical quasi-hollow MoS2 microspheres encapsulated porous carbon as stable anode for Li-ion batteries[J]. Small (Weinheim an Der Bergstrasse, Germany), 2014, 10(23): 4975-4981.
|
23 |
WEI X, LIN C C, WU C W, et al. Three-dimensional hierarchically porous MoS2 foam as high-rate and stable lithium-ion battery anode[J]. Nature Communications, 2022, 13: doi: 10.1038/s41467-022-33790-z.
|
24 |
LIU Y C, ZHAO Y P, JIAO L F, et al. A graphene-like MoS2/graphene nanocomposite as a highperformance anode for lithium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(32): 13109-13115.
|
25 |
DING S J, CHEN JUN SONG, DAVID LOU X W. Glucose-assisted growth of MoS2 nanosheets on CNT backbone for improved lithium storage properties[J]. Chemistry-A European Journal, 2011, 17(47): 13142-13145.
|
27 |
CHAN K T, NEATON J B, COHEN M L. First-principles study of metal adatom adsorption on graphene[J]. Physical Review B, 2008, 77(23): doi: 10.1103/PhysRevB.77.235430.
|
28 |
PENG B, CHENG F Y, TAO Z L, et al. Lithium transport at silicon thin film: Barrier for high-rate capability anode[J]. The Journal of Chemical Physics, 2010, 133(3): doi: 10.1063/1.3462998.
|
29 |
SHAO Y F, GONG P L, PAN H, et al. H-/ dT-MoS2-on-MXene heterostructures as promising 2D anode materials for lithium-ion batteries: Insights from first principles[J]. Advanced Theory and Simulations, 2019, 2(8): doi: 10.1002/adts.201900045.
|
30 |
ZHANG X M, YU Z M, WANG S S, et al. Theoretical prediction of MoN2 monolayer as a high capacity electrode material for metal ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(39): 15224-15231.
|
31 |
CUI Y H, ZHAO Y, CHEN H, et al. First-principles study of MoO3/graphene composite as cathode material for high-performance lithium-ion batteries[J]. Applied Surface Science, 2018, 433: 1083-1093.
|