储能科学与技术 ›› 2023, Vol. 12 ›› Issue (3): 808-821.doi: 10.19799/j.cnki.2095-4239.2022.0492
薛凯元1,3,4(), 汪妍4(), 郎俊伟4, 何田2,3, 戴作强2,3, 郑宗敏2,3()
收稿日期:
2022-08-31
修回日期:
2022-11-10
出版日期:
2023-03-05
发布日期:
2023-04-14
通讯作者:
汪妍,郑宗敏
E-mail:997357549@qq.com;wangyan@licp.cas.cn;zmzheng@qdu.edu.cn
作者简介:
薛凯元(1999—),男,硕士研究生,研究方向为电化学储 能材料,E-mail:997357549@qq.com;
基金资助:
Kaiyuan XUE1,3,4(), Yan WANG4(), Junwei LANG4, Tian HE2,3, Zuoqiang DAI2,3, Zongmin ZHENG2,3()
Received:
2022-08-31
Revised:
2022-11-10
Online:
2023-03-05
Published:
2023-04-14
Contact:
Yan WANG, Zongmin ZHENG
E-mail:997357549@qq.com;wangyan@licp.cas.cn;zmzheng@qdu.edu.cn
摘要:
双阳离子型离子液体(DILs)由于具有极高的化学稳定性、电化学稳定性、热稳定性和环境友好等特点,引起了各个领域研究者的广泛关注。本文从DILs的结构特点出发,综述了不同阴阳离子和连接基团对DILs理化性质的影响,并对一些典型的合成路径进行了总结。本文重点对DILs在不同储能和转化器件的电解液体系中的研究现状进行总结和分析:在锂离子电池电解液中,基于DILs的电解液不仅具有高电位窗口和阻燃特性,还有助于稳定固态电解质膜的形成,能够更好地改善电池系统的稳定性和可逆性;在超级电容器电解液中,DILs具有宽的电化学窗口,但其较大的黏度严重阻碍了离子运动,尽管添加常规有机溶剂可降低黏度,但由于溶剂化效应而带来的溶剂分解等副反应也严重影响了电容器性能。除此之外,本文还总结了DILs在锌空气电池、质子交换膜燃料电池、染料敏化太阳能电池、氧化还原液流电池以及电催化中的探索研究,最后对目前DILs在电解液体系应用过程中存在的问题和将来主要的研究方向进行了总结。
中图分类号:
薛凯元, 汪妍, 郎俊伟, 何田, 戴作强, 郑宗敏. 双阳离子型离子液体在能量存储和转化体系中的应用进展[J]. 储能科学与技术, 2023, 12(3): 808-821.
Kaiyuan XUE, Yan WANG, Junwei LANG, Tian HE, Zuoqiang DAI, Zongmin ZHENG. The progress in applications of dicationic ionic liquids in the energy storage and conversion system[J]. Energy Storage Science and Technology, 2023, 12(3): 808-821.
1 | GOODENOUGH J B. Energy storage materials: A perspective[J]. Energy Storage Materials, 2015, 1: 158-161. |
2 | OLABI A G, ABDELKAREEM M A. Energy storage systems towards 2050[J]. Energy, 2021, 219: doi: 10.1016/j.energy.2020.119634. |
3 | LI M, LU J, CHEN Z W, et al. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): doi: 10.1002/adma.201800561. |
4 | POONAM, SHARMA K, ARORA A, et al. Review of supercapacitors: Materials and devices[J]. Journal of Energy Storage, 2019, 21: 801-825. |
5 | HOSSEINI S, MASOUDI SOLTANI S, LI Y Y. Current status and technical challenges of electrolytes in zinc-air batteries: An in-depth review[J]. Chemical Engineering Journal, 2021, 408: doi: 10.1016/j.cej.2020.127241. |
6 | SINGLA M K, NIJHAWAN P, OBEROI A S. Hydrogen fuel and fuel cell technology for cleaner future: A review[J]. Environmental Science and Pollution Research International, 2021, 28(13): 15607-15626. |
7 | NAYAK P K, MAHESH S, SNAITH H J, et al. Photovoltaic solar cell technologies: Analysing the state of the art[J]. Nature Reviews Materials, 2019, 4(4): 269-285. |
8 | YAMADA Y, WANG J H, KO S, et al. Advances and issues in developing salt-concentrated battery electrolytes[J]. Nature Energy, 2019, 4(4): 269-280. |
9 | LOGAN E R, DAHN J R. Electrolyte design for fast-charging Li-ion batteries[J]. Trends in Chemistry, 2020, 2(4): 354-366. |
10 | DOUGHTY D H, ROTH E P. A general discussion of Li ion battery safety[J]. Electrochemical Society Interface, 2012: doi: 10.1149/2.F03122if. |
11 | LIU K, LIU Y Y, LIN D C, et al. Materials for lithium-ion battery safety[J]. Science Advances, 2018, 4(6): doi: 10.1126/sciadv.aas9820. |
12 | HU L B, XU K. Nonflammable electrolyte enhances battery safety[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(9): 3205-3206. |
13 | GUO Y, WU S C, HE Y B, et al. Solid-state lithium batteries: Safety and prospects[J]. eScience, 2022, 2(2): 138-163. |
14 | ZALOSH R, GANDHI P, BAROWY A. Lithium-ion energy storage battery explosion incidents[J]. Journal of Loss Prevention in the Process Industries, 2021, 72: doi: 10.1016/j.jlp.2021.104560. |
15 | WANG Q S, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224. |
16 | HENRIKSEN M, VAAGSAETHER K, LUNDBERG J, et al. Explosion characteristics for Li-ion battery electrolytes at elevated temperatures[J]. Journal of Hazardous Materials, 2019, 371: 1-7. |
17 | WALDEN U P. Molecular weights and electrical conductivity of several fused salts[J]. Bull Acad Imper Sci, 1914, 8: 405-422. |
18 | GALIŃSKI M, LEWANDOWSKI A, STĘPNIAK I. Ionic liquids as electrolytes[J]. Electrochimica Acta, 2006, 51(26): 5567-5580. |
19 | MINAMI I. Ionic liquids in tribology[J]. Molecules (Basel, Switzerland), 2009, 14(6): 2286-2305. |
20 | BERMÚDEZ M D, JIMÉNEZ A E, SANES J, et al. Ionic liquids as advanced lubricant fluids[J]. Molecules (Basel, Switzerland), 2009, 14(8): 2888-2908. |
21 | WASSERSCHEID P, KEIM W. Ionic liquids—New "solutions" for transition metal catalysis[J]. Angewandte Chemie, 2000, 39(21): 3772-3789. |
22 | PAUL A, MANDAL P K, SAMANTA A. On the optical properties of the imidazolium ionic liquids[J]. The Journal of Physical Chemistry B, 2005, 109(18): 9148-9153. |
23 | DUPONT J, SUAREZ P A Z. Physico-chemical processes in imidazolium ionic liquids[J]. Physical Chemistry Chemical Physics: PCCP, 2006, 8(21): 2441-2452. |
24 | CANONGIA LOPES J N, COSTA GOMES M F, PÁDUA A A H. Nonpolar, polar, and associating solutes in ionic liquids[J]. The Journal of Physical Chemistry B, 2006, 110(34): 16816-16818. |
25 | ENDRES F, ZEIN EL ABEDIN S. Air and water stable ionic liquids in physical chemistry[J]. Physical Chemistry Chemical Physics: PCCP, 2006, 8(18): 2101-2116. |
26 | GUPTA H, SHALU, BALO L, et al. Effect of temperature on electrochemical performance of ionic liquid based polymer electrolyte with Li/LiFePO4 electrodes[J]. Solid State Ionics, 2017, 309: 192-199. |
27 | ARANO K, BEGIC S, CHEN F F, et al. Tuning the formation and structure of the silicon electrode/ionic liquid electrolyte interphase in superconcentrated ionic liquids[J]. ACS Applied Materials & Interfaces, 2021, 13(24): 28281-28294. |
28 | ZHANG S C, LI S Y, LU Y Y. Designing safer lithium-based batteries with nonflammable electrolytes: A review[J]. eScience, 2021, 1(2): 163-177. |
29 | ZHOU D, WANG H L, MAO N, et al. High energy supercapacitors based on interconnected porous carbon nanosheets with ionic liquid electrolyte[J]. Microporous and Mesoporous Materials, 2017, 241: 202-209. |
30 | TIRUYE G A, MUÑOZ-TORRERO D, PALMA J, et al. Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids[J]. Journal of Power Sources, 2016, 326: 560-568. |
31 | LANG J W, ZHANG X, LIU L, et al. Highly enhanced energy density of supercapacitors at extremely low temperatures[J]. Journal of Power Sources, 2019, 423: 271-279. |
32 | MEI X Y, YUE Z, MA Q, et al. Synthesis and electrochemical properties of new dicationic ionic liquids[J]. Journal of Molecular Liquids, 2018, 272: 1001-1018. |
33 | ANDERSON J L, DING R F, ELLERN A, et al. Structure and properties of high stability geminal dicationic ionic liquids[J]. Journal of the American Chemical Society, 2005, 127(2): 593-604. |
34 | RAX, SINGH A, RASOOL A, et al. Dicationic ionic liquids and their applications[J]. The Electrochemical Society Interface, 2019: doi: 10.21767/2394-3718.100045. |
35 | LI J, KANG Y, LI B H, et al. PEG-linked functionalized dicationic ionic liquids for highly efficient SO2 capture through physical absorption[J]. Energy & Fuels, 2018, 32(12): 12703-12710. |
36 | BOUMEDIENE M, HADDAD B, PAOLONE A, et al. Synthesis, thermal stability, vibrational spectra and conformational studies of novel dicationic meta-xylyl linked bis-1-methylimidazolium ionic liquids[J]. Journal of Molecular Structure, 2019, 1186: 68-79. |
37 | CLARKE C J, BUI-LE L, HALLETT J P, et al. Thermally-stable imidazolium dicationic ionic liquids with pyridine functional groups[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(23): 8762-8772. |
38 | GUO W H, ZUO M H, ZHAO J, et al. Novel Brønsted–Lewis acidic di-cationic ionic liquid for efficient conversion carbohydrate to platform compound[J]. Cellulose, 2020, 27(12): 6897-6908. |
39 | TALEBI M, PATIL R A, ARMSTRONG D W. Physicochemical properties of branched-chain dicationic ionic liquids[J]. Journal of Molecular Liquids, 2018, 256: 247-255. |
40 | SUN Y X, WANG Y Y, SHEN B B, et al. Synthesis and investigation of physico-chemical properties of dicationic ionic liquids[J]. Royal Society Open Science, 2018, 5(12): doi: 10.1098/rsos.181230. |
41 | TURCHENIUK K, BONDAREV D, SINGHAL V, et al. Ten years left to redesign lithium-ion batteries[J]. Nature, 2018, 559(7715): 467-470. |
42 | CHOMBO P V, LAOONUAL Y. A review of safety strategies of a Li-ion battery[J]. Journal of Power Sources, 2020, 478: doi: 10.1016/j.jpowsour.2020.228649. |
43 | SLOOP S E, KERR J B, KINOSHITA K. The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge[J]. Journal of Power Sources, 2003, 119: 330-337. |
44 | WANG Q S, JIANG L H, YU Y, et al. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect[J]. Nano Energy, 2019, 55: 93-114. |
45 | CHAKRABORTY M, BARIK S, MAHAPATRA A, et al. Effect of lithium-ion on the structural organization of monocationic and dicationic ionic liquids[J]. The Journal of Physical Chemistry B, 2021, 125(47): 13015-13026. |
46 | CHATTERJEE K, PATHAK A D, LAKMA A, et al. Synthesis, characterization and application of a non-flammable dicationic ionic liquid in lithium-ion battery as electrolyte additive[J]. Scientific Reports, 2020, 10(1): 1-12. |
47 | NIRMALE T C, KHUPSE N D, KALUBARME R S, et al. Imidazolium-based dicationic ionic liquid electrolyte: Strategy toward safer lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(26): 8297-8304. |
48 | VÉLEZ J F, VÁZQUEZ-SANTOS M B, AMARILLA J M, et al. Geminal pyrrolidinium and piperidinium dicationic ionic liquid electrolytes. Synthesis, characterization and cell performance in LiMn2O4 rechargeable lithium cells[J]. Journal of Power Sources, 2019, 439: doi: 10.1016/j.jpowsour.2019.227098. |
49 | VÉLEZ J F, VAZQUEZ-SANTOS M B, AMARILLA J M, et al. Asymmetrical imidazolium-trialkylammonium room temperature dicationic ionic liquid electrolytes for Li-ion batteries[J]. Electrochimica Acta, 2018, 280: 171-180. |
50 | TSENG Y C, HSIANG S H, TSAO C H, et al. In situ formation of polymer electrolytes using a dicationic imidazolium cross-linker for high-performance lithium ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(9): 5796-5806. |
51 | TIAN X L, YANG P, YI Y K, et al. Self-healing and high stretchable polymer electrolytes based on ionic bonds with high conductivity for lithium batteries[J]. Journal of Power Sources, 2020, 450: doi: 10.1016/j.jpowsour.2019.227629. |
52 | LI R J, FANG Z, WANG C, et al. Six-armed and dicationic polymeric ionic liquid for highly stretchable, nonflammable and Notch-insensitive intrinsic self-healing solid-state polymer electrolyte for flexible and safe lithium batteries[J]. Chemical Engineering Journal, 2022, 430: doi: 10.1016/j.cej.2021.132706 |
53 | CAI K D, MU W F, ZHANG Q G, et al. Study on the application of N, N ʹ-1, 4-diethyl, triethylene, and diamine tetrafluoroborate in supercapacitors[J]. Electrochemical and Solid-State Letters, 2010, 13(11): A147. |
54 | ZHENG C, YOSHIO M, QI L, et al. A divalent quaternary alkyl ammonium salt as the electrolyte for high-energy electric double-layer capacitors[J]. Journal of Power Sources, 2012, 220: 169-172. |
55 | JHA M K, SUNARIWAL N, PARKER B J, et al. Multi-cationic ionic liquid combination enabling 86-fold enhancement in frequency response and superior energy density in all-solid-state supercapacitors[J]. Journal of Energy Storage, 2022, 53: doi: 10.1016/j.est.2022.105164. |
56 | LI S, ZHU M Y, FENG G. The effects of dication symmetry on ionic liquid electrolytes in supercapacitors[J]. Journal of Physics Condensed Matter: an Institute of Physics Journal, 2016, 28(46): doi: 10.1088/0953-8984/28/46/464005. |
57 | LEONG K W, WANG Y F, NI M, et al. Rechargeable Zn-air batteries: Recent trends and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2022, 154: doi: 10.1016/j.rser.2021.111771 |
58 | XU M, DOU H Z, ZHANG Z, et al. Hierarchically nanostructured solid-state electrolyte for flexible rechargeable zinc-air batteries[J]. Angewandte Chemie (International Ed in English), 2022, 61(23): doi: 10.1002/anie.202117703. |
59 | LI G Q, KUJAWSKI W, RYNKOWSKA E. Advancements in proton exchange membranes for high-performance high-temperature proton exchange membrane fuel cells (HT-PEMFC)[J]. Reviews in Chemical Engineering, 2022, 38(3): 327-346. |
60 | ALASHKAR A, AL-OTHMAN A, TAWALBEH M, et al. A critical review on the use of ionic liquids in proton exchange membrane fuel cells[J]. Membranes, 2022, 12(2): 178. |
61 | HOOSHYARI K, JAVANBAKHT M, ADIBI M. Novel composite membranes based on PBI and dicationic ionic liquids for high temperature polymer electrolyte membrane fuel cells[J]. Electrochimica Acta, 2016, 205: 142-152. |
62 | HOOSHYARI K, JAVANBAKHT M, ADIBI M. Novel composite membranes based on dicationic ionic liquid and polybenzimidazole mixtures as strategy for enhancing thermal and electrochemical properties of proton exchange membrane fuel cells applications at high temperature[J]. International Journal of Hydrogen Energy, 2016, 41(25): 10870-10883. |
63 | RAJABI Z, JAVANBAKHT M, HOOSHYARI K, et al. Phosphoric acid doped polybenzimidazole based polymer electrolyte membrane and functionalized SBA-15 mesoporous for elevated temperature fuel cell[J]. International Journal of Hydrogen Energy, 2021, 46(66): 33241-33259. |
64 | IFTIKHAR H, SONAI G G, HASHMI S G, et al. Progress on electrolytes development in dye-sensitized solar cells[J]. Materials (Basel, Switzerland), 2019, 12(12): 1998. |
65 | HE T, WANG Y F, ZENG J H. Stable, high-efficiency pyrrolidinium-based electrolyte for solid-state dye-sensitized solar cells[J]. ACS Applied Materials & Interfaces, 2015, 7(38): 21381-21390. |
66 | KWABI D G, JI Y L, AZIZ M J. Electrolyte lifetime in aqueous organic redox flow batteries: A critical review[J]. Chemical Reviews, 2020, 120(14): 6467-6489. |
67 | ZHANG C K, ZHANG L Y, DING Y, et al. Progress and prospects of next-generation redox flow batteries[J]. Energy Storage Materials, 2018, 15: 324-350. |
68 | HU B, HU M W, LUO J, et al. A stable, low permeable TEMPO catholyte for aqueous total organic redox flow batteries[J]. Advanced Energy Materials, 2022, 12(8): doi: 10.1002/aenm.202102577. |
69 | AHN S, JANG J H, KANG J, et al. Systematic designs of dicationic heteroarylpyridiniums as negolytes for nonaqueous redox flow batteries[J]. ACS Energy Letters, 2021, 6(9): 3390-3397. |
70 | ZHANG G R, ETZOLD B J M. Ionic liquids in electrocatalysis[J]. Journal of Energy Chemistry, 2016, 25(2): 199-207. |
71 | GUO Y N, HE D L, XIE A M, et al. The electrochemical oxidation of hydroquinone and catechol through a novel poly-geminal dicationic ionic liquid (PGDIL)-TiO2 composite film electrode[J]. Polymers, 2019, 11(11): 1907. |
72 | MIRÓ R, FERNÁNDEZ-LLAMAZARES E, GODARD C, et al. Synergism between iron porphyrin and dicationic ionic liquids: Tandem CO2 electroreduction-carbonylation reactions[J]. Chemical Communications(Cambridge, England), 2022, 58(75): 10552-10555. |
[1] | 封迈, 陈楠, 陈人杰. 锂离子电池低温电解液的研究进展[J]. 储能科学与技术, 2023, 12(3): 792-807. |
[2] | 祝玉婷, 闫共芹, 林羽芊. MoS2/RGO复合材料的电化学性能和第一性原理研究[J]. 储能科学与技术, 2023, 12(3): 698-709. |
[3] | 许珂, 陈珏锡, 孟瑶, 袁治冶, 汪形艳. Cu-NiCoP微球的制备及其超级电容性能[J]. 储能科学与技术, 2023, 12(2): 357-365. |
[4] | 王放放, 冯祥明, 赵光金, 夏大伟, 胡玉霞, 陈卫华. 电化学阻抗谱识别不同化学体系退役动力锂离子电池[J]. 储能科学与技术, 2023, 12(2): 609-614. |
[5] | 刘阳, 滕卫军, 谷青发, 孙鑫, 谭宇良, 方知进, 李建林. 规模化多元电化学储能度电成本及其经济性分析[J]. 储能科学与技术, 2023, 12(1): 312-318. |
[6] | 李泓, 张强. 蓄势赋能谋发展,勇毅笃行谱新篇[J]. 储能科学与技术, 2022, 11(9): 2691-2701. |
[7] | 陈晓宇, 耿萌萌, 王乾坤, 沈佳妮, 贺益君, 马紫峰. 基于电化学阻抗特征选择和高斯过程回归的锂离子电池健康状态估计方法[J]. 储能科学与技术, 2022, 11(9): 2995-3002. |
[8] | 沈馨, 张睿, 赵辰孜, 武鹏, 张羽彤, 张俊东, 范丽珍, 刘全兵, 陈爱兵, 张强. 金属锂电池中力-电化学机制研究进展[J]. 储能科学与技术, 2022, 11(9): 2781-2797. |
[9] | 张群斌, 董陶, 李晶晶, 刘艳侠, 张海涛. 废旧电池电解液回收及高值化利用研发进展[J]. 储能科学与技术, 2022, 11(9): 2798-2810. |
[10] | 李育磊, 刘玮, 董斌琦, 夏定国. 双碳目标下中国绿氢合成氨发展基础与路线[J]. 储能科学与技术, 2022, 11(9): 2891-2899. |
[11] | 马勇, 李晓涵, 孙磊, 郭东亮, 杨景刚, 刘建军, 肖鹏, 钱广俊. 基于三维电化学热耦合析锂模型的锂离子电池参数设计[J]. 储能科学与技术, 2022, 11(8): 2600-2611. |
[12] | 曹志成, 周开运, 朱家立, 刘高明, 严慜, 汤舜, 曹元成, 程时杰, 张炜鑫. 锂离子电池储能系统消防技术的中国专利分析[J]. 储能科学与技术, 2022, 11(8): 2664-2670. |
[13] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[14] | 谢程露, 黄贤坤, 康丽霞, 刘永忠. 胶体溶液制备碳纳米管负载钌纳米颗粒的电催化合成氨性能[J]. 储能科学与技术, 2022, 11(6): 1947-1956. |
[15] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||