储能科学与技术 ›› 2023, Vol. 12 ›› Issue (6): 1981-1994.doi: 10.19799/j.cnki.2095-4239.2023.0316
收稿日期:
2023-05-05
修回日期:
2023-05-19
出版日期:
2023-06-05
发布日期:
2023-06-21
通讯作者:
闵永军
E-mail:lf1830661941@163.com;yjmin@njfu.edu.cn
作者简介:
李放(1999—),男,硕士研究生,研究方向为基于数据驱动的新能源汽车性能评估与检验技术,E-mail:lf1830661941@163.com;
基金资助:
Fang LI(), Yongjun MIN(), Yong ZHANG
Received:
2023-05-05
Revised:
2023-05-19
Online:
2023-06-05
Published:
2023-06-21
Contact:
Yongjun MIN
E-mail:lf1830661941@163.com;yjmin@njfu.edu.cn
摘要:
锂离子电池作为电动汽车的主流储能元件,其可靠性下降将导致电动汽车性能异常退化或故障频发,甚至引发安全事故,发展先进的电池故障诊断与健康状态预估技术已成为动力锂电池可靠性领域的研究热点,而大数据与电动汽车的深度融合为电池可靠性关键技术发展提供了新思路。因此,本文首先介绍新能源汽车大数据平台的数据特点与数据清洗方法,简要回顾了大数据背景下可靠性关键技术在电动汽车与大数据平台的应用现状。然后围绕动力锂电池可靠性关键技术中电池故障诊断与健康状态预估研究,以数据驱动模型为核心,整理了基于大数据的电池故障诊断和健康状态预估的研究现状与方法,分析了电池故障诊断中基于机器学习、统计学、信号学、融合模型的优势与不足;对电池健康预估中基于历史运行数据、增量容量分析法提取特征的理论基础与电池健康预估模型进行综述。最后总结了当前研究在数据清洗、电池故障诊断和健康状态预估方面的局限性与面临的挑战,展望动力锂电池可靠性关键技术的未来发展方向。
中图分类号:
李放, 闵永军, 张涌. 基于大数据的动力锂电池可靠性关键技术研究综述[J]. 储能科学与技术, 2023, 12(6): 1981-1994.
Fang LI, Yongjun MIN, Yong ZHANG. Review of key technology research on the reliability of power lithium batteries based on big data[J]. Energy Storage Science and Technology, 2023, 12(6): 1981-1994.
表 1
数据平台所采集的某电动公交车的一条行驶片段"
数据类型 | 数据内容 | 数据类型 | 数据内容 |
---|---|---|---|
数据时间 | 2022/3/13 5:48 | 电机转速/(r/min) | 1900 |
车辆状态 | 启动 | 电机转矩/(N·m) | 114 |
充电状态 | 未充电 | 电机温度/℃ | 29 |
车速/(km/h) | 49.8 | 电机控制器输入电压/V | 667.9 |
累计里程/km | 151287.3 | 电机控制器直流母线电流/A | 33 |
总电压/V | 653.5 | 最高电压单体代号 | 10 |
总电流/A | 36.6 | 最高单体电压/V | 3.308 |
SOC/% | 97 | 最低电压单体代号 | 77 |
DC-DC状态 | 工作 | 最低单体电压/V | 3.303 |
绝缘电阻/kΩ | 19012 | 探针最高温度/℃ | 35 |
加速踏板行程/% | 22 | 探针最低温度/℃ | 32 |
制动踏板状态 | 制动关 | 最高报警等级 | 无故障 |
定位状态 | 有效定位(东经/北纬) | 通用报警标志 | — |
定位信息(经纬度) | 120.53°/31.30° | 单体电压(0~335号)/V | 3.303~3.308 |
电机控制器温度/℃ | 29 | 探针温度(0~63号)/℃ | 32~35 |
表 2
故障诊断方法总结与对比"
故障诊断方法 | 算法类型 | 参考文献 | 优点 | 缺点 |
---|---|---|---|---|
机器学习 | 聚类方法 | [ | 避免了单一阈值引起的虚警,准确定位故障 | 聚类参数的选取无明确规则 |
神经网络 | [ | 预测精准度高,可实现未来状态预测 | 需求数据多,易陷入过拟合,调参复杂 | |
集成学习 | [ | |||
统计学和信号学 | 统计指标 | [ | 方法简单,移植性好 | 阈值选择困难,易产生虚警或预警滞后 |
熵理论 | [ | 数据波动时能有效检测异常 | 数据波动达到一定程度故障才能被检测 | |
相关系数 | [ | 算法复杂度低,占用内存小 | 受噪声影响较大 | |
信号分解 | [ | 故障诊断灵敏,能识别早期细微故障征兆 | 在线应用受限 | |
状态表示法 | [ | |||
融合模型 | 统计指标+神经网络 | [ | 统计学与神经网络的故障诊断结果互为验证 | 单体参数的分布情况未知 |
统计指标/信号分解+聚类方法 | [ | 分级诊断节约平台内存,可在早期提前发现潜在故障 | 融合诊断模型构建复杂 | |
信号分解+孤立森林 | [ |
表 3
SOH预估方法总结与对比"
SOH预估方法 | 算法类型/IC曲线提取方法 | 参考文献 | 优点 | 缺点 | 量化指标(SOH预估) |
---|---|---|---|---|---|
基于运行数据 | 神经网络 | [ | 预测精度高,对序列数据有良好的拟合跟踪能力 | 需求数据多,易陷入过拟合,调参复杂 | 最大相对误差为4.5%[ |
贝叶斯网络 | [ | 概率模型实现了泛化与训练的平衡 | 核函数的选取对模型性能影响较大 | 最大绝对误差(mean absolute error,MAE)为4%[ | |
高斯过程回归 | [ | ||||
箱线图 | [ | 易于实现,移植性好 | 无法量化电池SOH | — | |
基于增量容量 分析法 | 离散IC提取 | [ | IC提取更简单,减少内存消耗 | 计算易受噪声影响 | — |
结合等效电路 | [ | 提高了SOH预估精度 | 参数辨识复杂 | 最大MAE为1.5%[ | |
结合单体串并联的电路结构 | [ | 考虑了单体与电池模组的关系 | 单体不一致会影响模型性能 | 平均RMSE为2.04% | |
结合插值法 | [ | 弥补了离散数据的缺点 | IC曲线光滑性不高 | 最大RMSE为1.61% | |
结合支持向量回归 | [ | 改善了由于精度导致无法提取IC曲线的情况 | 支持向量回归处理大数据运行时间过长 | 平均相对误差为4% |
1 | SANGUESA J A, TORRES-SANZ V, GARRIDO P, et al. A review on electric vehicles: Technologies and challenges[J]. Smart Cities, 2021, 4(1): 372-404. |
2 | HASAN M K, MAHMUD M, AHASAN HABIB A K M, et al. Review of electric vehicle energy storage and management system: Standards, issues, and challenges[J]. Journal of Energy Storage, 2021, 41: doi:10.1016/j.est.2021.102940. |
3 | GANDOMAN F H, AHMADI A, VAN DEN BOSSCHE P, et al. Status and future perspectives of reliability assessment for electric vehicles[J]. Reliability Engineering & System Safety, 2019, 183: 1-16. |
4 | GANDOMAN F H, JAGUEMONT J, GOUTAM S, et al. Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges[J]. Applied Energy, 2019, 251: doi: 10.1016/j.apenergy.2019.113343. |
5 | ZHANG X H, LI Z, LUO L G, et al. A review on thermal management of lithium-ion batteries for electric vehicles[J]. Energy, 2022, 238: doi: 10.1016/j.energy.2021.121652. |
6 | 王震坡, 袁昌贵, 李晓宇. 新能源汽车动力电池安全管理技术挑战与发展趋势分析[J]. 汽车工程, 2020, 42(12): 1606-1620. |
WANG Z P, YUAN C G, LI X Y. An analysis on challenge and development trend of safety management technologies for traction battery in new energy vehicles[J]. Automotive Engineering, 2020, 42(12): 1606-1620. | |
7 | 佘承其, 张照生, 刘鹏, 等. 大数据分析技术在新能源汽车行业的应用综述——基于新能源汽车运行大数据[J]. 机械工程学报, 2019, 55(20): 3-16. |
SHE C Q, ZHANG Z S, LIU P, et al. Overview of the application of big data analysis technology in new energy vehicle industry: Based on operating big data of new energy vehicle[J]. Journal of Mechanical Engineering, 2019, 55(20): 3-16. | |
8 | 何文轩, 耿磊, 姚芳. 电动汽车动力锂离子电池可靠性关键技术综述[J/OL]. 电源学报: 1-21[2022-08-29]. http://kns.cnki.net/kcms/detail/12.1420.tm.20220216.1529.002.html. |
9 | PEVEC D, VDOVIC H, GACE I, et al. Distributed data platform for automotive industry: A robust solution for tackling big challenges of big data in transportation science[C]//2019 15th International Conference on Telecommunications (ConTEL). Graz, Austria. IEEE, 2019: 1-8. |
10 | LV Z H, QIAO L, CAI K, et al. Big data analysis technology for electric vehicle networks in smart cities[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3): 1807-1816. |
11 | 顾荣. 大数据处理技术与系统研究[D]. 南京: 南京大学, 2016. |
GU R. Research on big data processing technology and system[D]. Nanjing: Nanjing University, 2016. | |
12 | ZHOU L T, ZHAO Y, LI D, et al. State-of-health estimation for LiFePO4 battery system on real-world electric vehicles considering aging stage[J]. IEEE Transactions on Transportation Electrification, 2022, 8(2): 1724-1733. |
13 | 中华人民共和国工业与信息化部. GB/T 32960—2016电动汽车远程服务与管理系统技术规范[S]. 北京: 中国标准出版社, 2016. |
Ministry of Industry and Information Technology in China. GB/T 32960—2016 Technical Specifications of Remote Service and Management System for Electric Vehicles[S]. Beijing: Standards Press of China, 2016. | |
14 | WU X G, LI M Z, DU J Y, et al. SOC prediction method based on battery pack aging and consistency deviation of thermoelectric characteristics[J]. Energy Reports, 2022, 8: 2262-2272. |
15 | SUN Z Y, WANG Z P, CHEN Y, et al. Modified relative entropy-based lithium-ion battery pack online short-circuit detection for electric vehicle[J]. IEEE Transactions on Transportation Electrification, 2022, 8(2): 1710-1723. |
16 | HOU Y K, ZHANG Z S, LIU P, et al. Research on a novel data-driven aging estimation method for battery systems in real-world electric vehicles[J]. Advances in Mechanical Engineering, 2021, 13(7): doi: 10.1177/16878140211027735. |
17 | 王安晨. 基于多源信息融合的车载电池健康状态评估方法研究[D]. 南京: 南京林业大学, 2021. |
WANG A C. Research on evaluation method of vehicle battery health based on multi-source information fusion[D]. Nanjing: Nanjing Forestry University, 2021. | |
18 | 梁丹阳, 程相, 郗建国, 等. 基于多特征融合的动力电池RUL预测[J]. 中国测试, 2021, 47(12): 149-156. |
LIANG D Y, CHENG X, XI J G, et al. RUL prediction of power battery based on multi-feature fusion[J]. China Measurement & Testing Technology, 2021, 47(12): 149-156. | |
19 | HUO Q, MA Z K, ZHAO X S, et al. Bayesian network based state-of-health estimation for battery on electric vehicle application and its validation through real-world data[J]. IEEE Access, 2021, 9: 11328-11341. |
20 | LI S Q, HE H W, LI J W. Big data driven lithium-ion battery modeling method based on SDAE-ELM algorithm and data pre-processing technology[J]. Applied Energy, 2019, 242: 1259-1273. |
21 | LI S Q, HE H W, ZHAO P F, et al. Data cleaning and restoring method for vehicle battery big data platform[J]. Applied Energy, 2022, 320: doi: 10.1016/j.apenergy.2022.119292. |
22 | HU X S, ZHANG K, LIU K L, et al. Advanced fault diagnosis for lithium-ion battery systems: A review of fault mechanisms, fault features, and diagnosis procedures[J]. IEEE Industrial Electronics Magazine, 2020, 14(3): 65-91. |
23 | XIONG R, SUN W Z, YU Q Q, et al. Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles[J]. Applied Energy, 2020, 279: doi: 10.1016/j.apenergy. 2020.115855. |
24 | HUA Y, LIU X H, ZHOU S D, et al. Toward sustainable reuse of retired lithium-ion batteries from electric vehicles[J]. Resources, Conservation and Recycling, 2021, 168: doi: 10.1016/j.resconrec. 2020.105249. |
25 | LI D, ZHANG Z S, LIU P, et al. DBSCAN-based thermal runaway diagnosis of battery systems for electric vehicles[J]. Energies, 2019, 12(15): 2977. |
26 | LIU P, WANG J, WANG Z P, et al. High-dimensional data abnormity detection based on improved Variance-of-Angle (VOA) algorithm for electric vehicles battery[C]//2019 IEEE Energy Conversion Congress and Exposition (ECCE). September 29-October 3, 2019, Baltimore, MD, USA. IEEE, 2019: 5072-5077. |
27 | 向兆军, 胡凤玲, 罗明华, 等. 基于电池组模型和聚类算法的锂离子电池组SOC不一致估计[J]. 机械工程学报, 2020, 56(18): 154-163. |
XIANG Z J, HU F L, LUO M H, et al. Estimation of SOC inconsistencies in lithium-ion battery packs based on battery pack modeling and clustering algorithm[J]. Journal of Mechanical Engineering, 2020, 56(18): 154-163. | |
28 | HONG J C, WANG Z P, YAO Y T. Fault prognosis of battery system based on accurate voltage abnormity prognosis using long short-term memory neural networks[J]. Applied Energy, 2019, 251: doi: 10.1016/j.apenergy.2019.113381. |
29 | LI D, LIU P, ZHANG Z S, et al. Battery thermal runaway fault prognosis in electric vehicles based on abnormal heat generation and deep learning algorithms[J]. IEEE Transactions on Power Electronics, 2022, 37(7): 8513-8525. |
30 | LIU Z C, ZHANG Z S, LI D, et al. Battery fault prognosis for electric vehicles based on AOM-ARIMA-LSTM in real time[C]//2022 5th International Conference on Energy, Electrical and Power Engineering (CEEPE). April 22-24, 2022, Chongqing, China. IEEE, 2022: 476-483. |
31 | GAN N F, SUN Z Y, ZHANG Z S, et al. Data-driven fault diagnosis of lithium-ion battery overdischarge in electric vehicles[J]. IEEE Transactions on Power Electronics, 2022, 37(4): 4575-4588. |
32 | WANG Z P, SONG C B, ZHANG L, et al. A data-driven method for battery charging capacity abnormality diagnosis in electric vehicle applications[J]. IEEE Transactions on Transportation Electrification, 2022, 8(1): 990-999. |
33 | QIN W Y, SUN W, YUAN X M, et al. Comparative analysis of battery diagnostic methodologies considering parameter learning process[C]//2021 IEEE 4th International Electrical and Energy Conference (CIEEC). May 28-30, 2021, Wuhan, China. IEEE, 2021: 1-6. |
34 | YIN H, WANG Z P, LIU P, et al. Voltage fault diagnosis of power batteries based on boxplots and gini impurity for electric vehicles[C]//2019 Electric Vehicles International Conference (EV). October 3-4, 2019, Bucharest, Romania. IEEE, 2019: 1-5. |
35 | LIU P, SUN Z Y, WANG Z P, et al. Entropy-based voltage fault diagnosis of battery systems for electric vehicles[J]. Energies, 2018, 11(1): 136. |
36 | LI X Y, WANG Z P. A novel fault diagnosis method for lithium-Ion battery packs of electric vehicles[J]. Measurement, 2018, 116: 402-411. |
37 | HONG J C, WANG Z P, MA F, et al. Thermal runaway prognosis of battery systems using the modified multiscale entropy in real-world electric vehicles[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2269-2278. |
38 | WANG Z P, HONG J C, LIU P, et al. Voltage fault diagnosis and prognosis of battery systems based on entropy and Z-score for electric vehicles[J]. Applied Energy, 2017, 196: 289-302. |
39 | LI X Y, DAI K W, WANG Z P, et al. Lithium-ion batteries fault diagnostic for electric vehicles using sample entropy analysis method[J]. Journal of Energy Storage, 2020, 27: doi: 10.1016/j.est.2019.101121. |
40 | HONG J C, WANG Z P, QU C H, et al. Fault prognosis and isolation of lithium-ion batteries in electric vehicles considering real-scenario thermal runaway risks[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(1): 88-99. |
41 | JIANG L L, DENG Z W, TANG X L, et al. Data-driven fault diagnosis and thermal runaway warning for battery packs using real-world vehicle data[J]. Energy, 2021, 234: doi: 10.1016/j.energy. 2021.121266. |
42 | ZHAO Y, LIU P, WANG Z P, et al. Fault and defect diagnosis of battery for electric vehicles based on big data analysis methods[J]. Applied Energy, 2017, 207: 354-362. |
43 | SUN Z Y, HAN Y, WANG Z P, et al. Detection of voltage fault in the battery system of electric vehicles using statistical analysis[J]. Applied Energy, 2022, 307: doi: 10.1016/j.apenergy.2021.118172. |
44 | LI F, MIN Y J, ZHANG Y. A novel method for lithium-ion battery fault diagnosis of electric vehicle based on real-time voltage[J]. Wireless Communications and Mobile Computing, 2022, 2022: 1-17. |
45 | CONG X W, ZHANG C P, JIANG J C, et al. A comprehensive signal-based fault diagnosis method for lithium-ion batteries in electric vehicles[J]. Energies, 2021, 14(5): 1221. |
46 | JIANG J C, LI T Y, CHANG C, et al. Fault diagnosis method for lithium-ion batteries in electric vehicles based on isolated forest algorithm[J]. Journal of Energy Storage, 2022, 50: doi: 10.1016/j.est.2022.104177. |
47 | SUN Z Y, WANG Z P, LIU P, et al. An online data-driven fault diagnosis and thermal runaway early warning for electric vehicle batteries[J]. IEEE Transactions on Power Electronics, 2022, 37(10): 12636-12646. |
48 | LI Y, LIU K L, FOLEY A M, et al. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review[J]. Renewable and Sustainable Energy Reviews, 2019, 113: doi: 10.1016/j.rser.2019. 109254. |
49 | TIAN H X, QIN P L, LI K, et al. A review of the state of health for lithium-ion batteries: Research status and suggestions[J]. Journal of Cleaner Production, 2020, 261: doi: 10.1016/j.jclepro.2020.120813. |
50 | YANG S J, ZHANG C P, JIANG J C, et al. Review on state-of-health of lithium-ion batteries: Characterizations, estimations and applications[J]. Journal of Cleaner Production, 2021, 314: doi: 10.1016/j.jclepro.2021.128015. |
51 | SONG L J, ZHANG K Y, LIANG T Y, et al. Intelligent state of health estimation for lithium-ion battery pack based on big data analysis[J]. Journal of Energy Storage, 2020, 32: doi: 10.1016/j.est. 2020.101836. |
52 | HONG J C, WANG Z P, CHEN W, et al. Online accurate state of health estimation for battery systems on real-world electric vehicles with variable driving conditions considered[J]. Journal of Cleaner Production, 2021, 294: doi: 10.1016/j.jclepro.2021.125814. |
53 | HE Z G, SHEN X Y, SUN Y Y, et al. State-of-health estimation based on real data of electric vehicles concerning user behavior[J]. Journal of Energy Storage, 2021, 41: doi: 10.1016/j.est.2021.102867. |
54 | LIANG K Z, ZHANG Z S, LIU P, et al. Data-driven ohmic resistance estimation of battery packs for electric vehicles[J]. Energies, 2019, 12(24): 4772. |
55 | HUANG B X, LIAO H Y, WANG Y Q, et al. Prediction and evaluation of health state for power battery based on Ridge linear regression model[J]. Science Progress, 2021, 104(4): doi: 10.1177/00368504211059047. |
56 | 周頔, 宋显华, 卢文斌, 等. 基于日常片段充电数据的锂电池健康状态实时评估方法研究[J]. 中国电机工程学报, 2019, 39(1): 105-111. |
ZHOU D, SONG X H, LU W B, et al. Real-time SOH estimation algorithm for lithium-ion batteries based on daily segment charging data[J]. Proceedings of the CSEE, 2019, 39(1): 105-111. | |
57 | SHE C Q, LI Y, ZOU C F, et al. Offline and online blended machine learning for lithium-ion battery health state estimation[J]. IEEE Transactions on Transportation Electrification, 2022, 8(2): 1604-1618. |
58 | TIAN Z Y, TU L, TIAN C, et al. Understanding battery degradation phenomenon in real-life electric vehicle use based on big data[C]//2017 3rd International Conference on Big Data Computing and Communications (BIGCOM). August 10-11, 2017, Chengdu, China. IEEE, 2017: 334-339. |
59 | WENG C H, FENG X N, SUN J, et al. State-of-health monitoring of lithium-ion battery modules and packs via incremental capacity peak tracking[J]. Applied Energy, 2016, 180: 360-368. |
60 | WENG C H, SUN J, PENG H E. A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring[J]. Journal of Power Sources, 2014, 258: 228-237. |
61 | SCHALTZ E, STROE D I, NØRREGAARD K, et al. Incremental capacity analysis applied on electric vehicles for battery state-of-health estimation[J]. IEEE Transactions on Industry Applications, 2021, 57(2): 1810-1817. |
62 | XU Z C, WANG J, LUND P D, et al. Estimation and prediction of state of health of electric vehicle batteries using discrete incremental capacity analysis based on real driving data[J]. Energy, 2021, 225: doi: 10.1016/j.energy.2021.120160. |
63 | LI X Y, WANG T Y, WU C X, et al. Battery pack state of health prediction based on the electric vehicle management platform data[J]. World Electric Vehicle Journal, 2021, 12(4): 204. |
64 | SHE C Q, ZHANG L, WANG Z P, et al. Battery state-of-health estimation based on incremental capacity analysis method: Synthesizing from cell-level test to real-world application[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(1): 214-223. |
65 | 叶俊涛. 电动汽车电池健康状态在线评估研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
YE J T. On-line evaluation of battery health status of electric vehicle[D]. Harbin: Harbin Institute of Technology, 2020. | |
66 | CHANG C, ZHOU X P, JIANG J C, et al. Micro-fault diagnosis of electric vehicle batteries based on the evolution of battery consistency relative position[J]. Journal of Energy Storage, 2022, 52: doi: 10.1016/j.est.2022.104746. |
67 | LIU P, WU Y Z, SHE C Q, et al. Comparative study of incremental capacity curve determination methods for lithium-ion batteries considering the real-world situation[J]. IEEE Transactions on Power Electronics, 2022, 37(10): 12563-12576. |
68 | ZHENG L F, ZHU J G, LU D D C, et al. Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries[J]. Energy, 2018, 150: 759-769. |
69 | SHE C Q, WANG Z P, SUN F C, et al. Battery aging assessment for real-world electric buses based on incremental capacity analysis and radial basis function neural network[J]. IEEE Transactions on Industrial Informatics, 2020, 16(5): 3345-3354. |
70 | STROE D I, SCHALTZ E. Lithium-ion battery state-of-health estimation using the incremental capacity analysis technique[J]. IEEE Transactions on Industry Applications, 2020, 56(1): 678-685. |
71 | 胡杰, 朱雪玲, 何陈, 等. 基于实车数据的电动汽车电池健康状态预测[J]. 汽车工程, 2021, 43(9): 1291-1299, 1313. |
HU J, ZHU X L, HE C, et al. Prediction on battery state of health of electric vehicles based on real vehicle data[J]. Automotive Engineering, 2021, 43(9): 1291-1299, 1313. | |
72 | 肖伟, 钟卫东, 舒小农, 等. 基于大数据的电池健康状态(SoH)的估算及应用[J]. 汽车安全与节能学报, 2019, 10(1): 101-105. |
XIAO W, ZHONG W D, SHU X N, et al. Battery state of health (SoH) estimation method and application based on big data[J]. Journal of Automotive Safety and Engergy, 2019, 10(1): 101-105. | |
73 | 龚贤武, 丁璐, 穆邱倩, 等. 基于实车数据的电动汽车电池健康状态估计[J]. 电源技术, 2021, 45(12): 1577-1580. |
GONG X W, DING L, MU Q Q, et al. SOH estimation of electric vehicle battery based on real segment charging data[J]. Chinese Journal of Power Sources, 2021, 45(12): 1577-1580. |
[1] | 谭必蓉, 杜建华, 叶祥虎, 曹馨, 瞿常. 基于模型的锂离子电池SOC估计方法综述[J]. 储能科学与技术, 2023, 12(6): 1995-2010. |
[2] | 陈雅, 范立云, 李晶雪, 李美斯, 徐超, 顾远琪. 二次流蛇形通道锂离子电池散热性能[J]. 储能科学与技术, 2023, 12(6): 1880-1889. |
[3] | 申锡江, 段强领, 秦鹏, 王青松, 孙金华. 三元锂离子电池组热失控阻隔及其传热特性实验研究[J]. 储能科学与技术, 2023, 12(6): 1862-1871. |
[4] | 陈育新, 杨家沐, 李东博, 练成, 刘洪来. 圆柱形锂离子电池真空干燥过程的数值模拟[J]. 储能科学与技术, 2023, 12(6): 1957-1967. |
[5] | 黄凌锋, 韩东梅, 黄盛, 王拴紧, 肖敏, 孟跃中. 含有机硼的锂离子电池聚合物电解质的研究进展[J]. 储能科学与技术, 2023, 12(6): 1815-1830. |
[6] | 李欣雨, 韩雪冰, 卢兰光, 李建秋, 欧阳明高. 基于大倍率电流脉冲的动力锂离子电池阻抗模型优化[J]. 储能科学与技术, 2023, 12(5): 1686-1694. |
[7] | 张吉栋, 杨展, 黄建国. 基于天然纤维素物质的C/TiO2/CuMoO4 微-纳结构复合纤维材料构筑及其电化学性能[J]. 储能科学与技术, 2023, 12(5): 1616-1624. |
[8] | 李金涛, 牟粤, 王静, 邱景义, 明海. 高镍正极材料的稳定改性方法研究综述[J]. 储能科学与技术, 2023, 12(5): 1636-1654. |
[9] | 韩路豪, 王子阳, 何骁龙, 何春汕, 石晓龙, 姚斌. 细水雾释放策略对大容量三元锂离子电池热失控火灾抑制效果的实验研究[J]. 储能科学与技术, 2023, 12(5): 1664-1674. |
[10] | 李林泽, 张向文. 基于组合频率阻抗特征的锂离子电池健康状态估算[J]. 储能科学与技术, 2023, 12(5): 1705-1712. |
[11] | 刘家亮, 郭翠静, 汪奂伶. 基于火灾事故树模型的储能锂离子电池安全性检测方法与验证[J]. 储能科学与技术, 2023, 12(5): 1695-1704. |
[12] | 成雪莉, 张维福, 罗城城, 袁小亚. 一步水热法制备三维石墨烯/Fe3O4 复合材料及其储锂性能[J]. 储能科学与技术, 2023, 12(4): 1066-1074. |
[13] | 杨妮, 苏岳锋, 王联, 李宁, 马亮, 朱晨. 聚焦离子束显微镜技术在锂离子电池领域的研究进展[J]. 储能科学与技术, 2023, 12(4): 1283-1294. |
[14] | 赵立禹, 孙桓五, 刘世闯, 闫志远. 重卡辅助动力电池加热系统能耗对比及优化[J]. 储能科学与技术, 2023, 12(4): 1139-1147. |
[15] | 管敏渊, 沈建良, 徐国华, 汤舜, 张炜鑫, 曹元成. 锂离子电池储能系统靶向消防装备设计与性能[J]. 储能科学与技术, 2023, 12(4): 1131-1138. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||