1 |
武昭原, 周明, 王剑晓, 等. 双碳目标下提升电力系统灵活性的市场机制综述[J]. 中国电机工程学报, 2022, 42(21): 7746-7763.
|
|
WU Z Y, ZHOU M, WANG J X, et al. Review on market mechanism to enhance the flexibility of power system under the dual-carbon target[J]. Proceedings of the Chinese Society for Electrical Engineering, 2022, 42(21): 7746-7763.
|
2 |
王宁, 陈志强, 刘明义, 等. 基于模糊综合评价的锂离子电池健康状态评估[J]. 发电技术, 2022, 43(5): 784-791.
|
|
WANG N, CHEN Z Q, LIU M Y, et al. Health status assessment of lithium-ion battery based on fuzzy comprehensive evaluation[J]. Power Generation Technology, 2022, 43(5): 784-791.
|
3 |
黄燕琴, 聂金泉, 王敖, 等. 锂离子电池不一致性综述[J]. 时代汽车, 2022(5): 102-107.
|
|
HUANG Y Q, NIE J Q, WANG A, et al. Review on inconsistent of lithium-ion batteries[J]. Auto Time, 2022(5): 102-107.
|
4 |
王琳舒. 锂离子动力电池一致性分析模型及其影响因素的仿真分析[D]. 北京: 北京有色金属研究总院, 2020.
|
|
WANG L S. Consistency analysis model of lithium-ion power battery and simulation analysis of its influencing factors[D]. Beijing: General Research Institute for Nonferrous Metals, 2020.
|
5 |
SEQUINO L, VAGLIECO B M. Potential of infrared temperature measurements for the online estimation of the state-of-charge of a Li-polymer battery[J]. Journal of Energy Storage, 2021, 44: 103532.
|
6 |
杨胜杰, 罗冰洋, 王菁, 等. 基于容量增量曲线峰值区间特征参数的锂离子电池健康状态估算[J]. 电工技术学报, 2021, 36(11): 2277-2287.
|
|
YANG S J, LUO B Y, WANG J, et al. State of health estimation for lithium-ion batteries based on peak region feature parameters of incremental capacity curve[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2277-2287.
|
7 |
刘宇龄, 孟锦豪, 彭乔, 等. 基于NSGA-Ⅱ遗传算法的锂电池均衡指标优化[J]. 储能科学与技术, 2023, 12(6): 1946-1956.
|
|
LIU Y L, MENG J H, PENG Q, et al. NSGA-Ⅱ genetic algorithm-based optimization of the lithium battery equalization index[J]. Energy Storage Science and Technology, 2023, 12(6): 1946-1956.
|
8 |
黄保帅, 张巍. 基于单体一致性对动力锂电池性能的影响研究[J]. 电源技术, 2018, 42(9): 1310-1311, 1320.
|
|
HUANG B S, ZHANG W. Influence of cell consistency on performance of power lithium battery[J]. Chinese Journal of Power Sources, 2018, 42(9): 1310-1311, 1320.
|
9 |
TIAN J Q, WANG Y J, LIU C, et al. Consistency evaluation and cluster analysis for lithium-ion battery pack in electric vehicles[J]. Energy, 2020, 194: 116944.
|
10 |
魏刚. 基于阻抗谱的锂离子电池快速状态评估系统设计[D]. 哈尔滨: 哈尔滨工业大学, 2020.
|
|
WEI G. Design of rapid state evaluation system for lithium-ion battery based on impedance spectrum[D]. Harbin: Harbin Institute of Technology, 2020.
|
11 |
靳文涛, 李煜阳, 贾学翠, 等. 储能电站电池一致性综合评估方法研究[J]. 电器与能效管理技术, 2022(5): 23-28.
|
|
JIN W T, LI Y Y, JIA X C, et al. Research on comprehensive evaluation method of battery consistency in energy storage power station[J]. Electrical & Energy Management Technology, 2022(5): 23-28.
|
12 |
王帅, 尹忠东, 郑重, 等. 电池模组一致性影响因素在放电电压曲线簇上的表征[J]. 电工技术学报, 2020, 35(8): 1836-1847.
|
|
WANG S, YIN Z D, ZHENG Z, et al. Representation of influence factors for battery module consistency on discharge voltage curves[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1836-1847.
|
13 |
程功. 电池组一致性的统计特性与变化规律研究[D]. 北京: 北京交通大学, 2017.
|
|
CHENG G. Study on statistical characteristics and changing rules of consistency of battery pack[D]. Beijing: Beijing Jiaotong University, 2017.
|
14 |
潘岳, 韩雪冰, 欧阳明高, 等. 锂离子电池内短路检测算法及其在实际数据中的应用[J]. 储能科学与技术, 2023, 12(1): 198-208.
|
|
PAN Y, HAN X B, OUYANG M G, et al. Research on the detection algorithm for internal short circuits in lithium-ion batteries and its application to real operating data[J]. Energy Storage Science and Technology, 2023, 12(1): 198-208.
|
15 |
曾建邦, 张月娅, 张壮, 等. 基于动态k值K-means++聚类的电动汽车动力电池电压不一致故障识别方法[J]. 中国科学(技术科学), 2023, 53(1): 28-40.
|
|
ZENG J B, ZHANG Y Y, ZHANG Z, et al. Identification of power battery voltage inconsistency faults in electric vehicles based on K-means++ clustering with dynamic k-values[J]. Scientia Sinica (Technologica), 2023, 53(1): 28-40.
|
16 |
程阳阳. 一种基于改进型K-means聚类算法的退役电池组筛选重组方法[J]. 能源工程, 2022, 42(4): 36-42, 55.
|
|
CHENG Y Y. An improved K-means clustering algorithm based screening and recombination method of retired battery pack[J]. Energy Engineering, 2022, 42(4): 36-42, 55.
|
17 |
贾俊, 胡晓松, 邓忠伟, 等. 数据驱动的锂离子电池健康状态综合评分及异常电池筛选[J]. 机械工程学报, 2021, 57(14): 141-149, 159.
|
|
JIA J, HU X S, DENG Z W, et al. Data-driven comprehensive evaluation of lithium-ion battery state of health and abnormal battery screening[J]. Journal of Mechanical Engineering, 2021, 57(14): 141-149, 159.
|
18 |
LIN D, LI Z H, FENG Y B, et al. Research on inconsistency identification of lithium-ion battery pack based on operational data[C]//2021 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS). May 10-12, 2021, Victoria, BC, Canada. IEEE, 2021: 498-502.
|
19 |
郭亚军. 综合评价理论、方法及应用[M]. 北京: 科学出版社, 2007.
|
|
GUO Y J. Theory, method and application of comprehensive evaluation[M]. Beijing: Science Press, 2007.
|
20 |
SANDER J, ESTER M, KRIEGEL H P, et al. Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 169-194.
|