储能科学与技术 ›› 2024, Vol. 13 ›› Issue (11): 3826-3855.doi: 10.19799/j.cnki.2095-4239.2024.0459

• 储能材料与器件 • 上一篇    下一篇

LATPLAGP固态电解质材料合成改性路线研究现状及展望

陈桢(), 李贤傲, 徐艺维, 刘欣(), 申泽骧, 陈明华()   

  1. 哈尔滨理工大学,黑龙江 哈尔滨 150080
  • 收稿日期:2024-05-27 修回日期:2024-06-13 出版日期:2024-11-28 发布日期:2024-11-27
  • 通讯作者: 刘欣,陈明华 E-mail:chen.zhen@hrbust.edu.cn;liu.xin@hrbust.edu.cn;mhchen@hrbust.edu.cn
  • 作者简介:陈桢(1991—),女,博士,教授,从事锂电正极材料、固态电解质、锂金属改性和界面修饰等方面研究,E-mail:chen.zhen@hrbust.edu.cn
  • 基金资助:
    国家自然科学基金(52277215)

Current research status and future prospects of the synthesis and modification routes for LATP and LAGP solid electrolytes

Zhen CHEN(), Xian'ao LI, Yiwei XU, Xin LIU(), Zexiang SHEN, Minghua CHEN()   

  1. Harbin University of Science and Technology, Harbin 150080, Heilongjiang, China
  • Received:2024-05-27 Revised:2024-06-13 Online:2024-11-28 Published:2024-11-27
  • Contact: Xin LIU, Minghua CHEN E-mail:chen.zhen@hrbust.edu.cn;liu.xin@hrbust.edu.cn;mhchen@hrbust.edu.cn

摘要:

固态电解质作为固态电池的关键组件,因其能够匹配高比容量的正、负极材料,实现更高的能量密度,并从根本上解决液态锂离子电池的安全隐患,而备受关注。其中,NASICON型的Li1+x Al x Ti2-x (PO4)3(LATP,0≤ x≤0.5)和Li1+x Al x Ge2-x (PO4)3(LAGP,0≤x≤0.5)氧化物固态电解质,因其出色的空气稳定性、高离子电导率、低廉的原料成本以及温和的合成条件,成为固态电解质商业化的有力竞争者。然而,传统的实验合成和改性优化方法研发成本高、周期长、效率低。理解LATP/LAGP中离子输运机制,探索材料合成新方法,提高材料研发的效率是当前研究的重点。本文详细探讨了LATP/LAGP材料的晶体结构、离子传导机制、合成制备技术、性能提升策略以及机器学习辅助材料合成等方面的研究进展。此外,通过综合分析合成成本与产物性能,总结了具有工业化潜力的合成优化路径,并结合具体实例展示了机器学习在固态电解质领域的广阔应用前景。最后,文章还分析了当前LATP、LAGP固态电解质研究中存在的不足,并从基础研究、工程应用和商业化推广三个维度展望了未来的发展方向。

关键词: LATP/LAGP固态电解质, Li+传输机理, 合成方法, 掺杂改性, 机器学习

Abstract:

Solid-state electrolytes are essential components of solid-state batteries, garnering significant attention for their potential to pair effectively with high-capacity cathode and anode materials, enhance energy density, and address the safety issues inherent in liquid lithium-ion batteries. Among these, NASICON-type oxide solid electrolytes, such as Li1+x Al x Ti2-x (PO4)3 (LATP, 0 ≤ x ≤ 0.5) and Li1+x Al x Ge2-x (PO4)3 (LAGP, 0 ≤ x ≤ 0.5), stand out due to their excellent air stability, high ionic conductivity, low-cost raw materials, and favorable synthesis conditions, making them strong candidates for commercial applications. However, traditional methods for optimizing synthesis and modification are often costly, time-consuming, and inefficient. Current research focuses on elucidating ion transport mechanisms, exploring novel synthesis techniques, and enhancing the efficiency of material development for LATP and LAGP. This paper reviews the advancements in LATP and LAGP research, including their crystal structures, ion conduction mechanisms, synthesis methods, performance enhancement strategies, and the integration of machine learning in material synthesis. By evaluating synthesis costs and product performance, the study identifies optimal synthesis pathways with potential for industrial application. Specific examples illustrate the promising role of machine learning in advancing the field of solid-state electrolytes. The paper concludes with an analysis of existing research gaps and outlines future directions for basic research, engineering applications, and commercial promotion of LATP and LAGP solid-state electrolytes.

Key words: LATP/LAGP solid-state electrolytes, Li+ transport mechanism, synthesis methods, doping modification, machine learning

中图分类号: