储能科学与技术 ›› 2024, Vol. 13 ›› Issue (11): 3856-3870.doi: 10.19799/j.cnki.2095-4239.2024.0553

• 储能材料与器件 • 上一篇    下一篇

电解水制氢用阴离子交换膜研究进展

邢学奇(), 宋鹏翔(), 申爱景, 鲁仰辉, 陈俊, 刘伟   

  1. 国家电投集团科学技术研究院有限公司,北京 102209
  • 收稿日期:2024-06-19 修回日期:2024-07-01 出版日期:2024-11-28 发布日期:2024-11-27
  • 通讯作者: 宋鹏翔 E-mail:xixuqi@tju.edu.cn;songpengxiang@spic.com.cn
  • 作者简介:邢学奇(1985—),男,博士,高级工程师,从事新型电解水制氢材料和器件的设计合成及性能研究,E-mail:xixuqi@tju.edu.cn
  • 基金资助:
    国家电投集团科学技术研究院有限公司项目(042300034966)

Recent progress of anion exchange membrane for hydrogen production via water electrolysis

Xueqi XING(), Pengxiang SONG(), Aijing SHEN, Yanghui LU, Jun CHEN, Wei LIU   

  1. State Power Investment Corporation Research Institute, Beijing 102209, China
  • Received:2024-06-19 Revised:2024-07-01 Online:2024-11-28 Published:2024-11-27
  • Contact: Pengxiang SONG E-mail:xixuqi@tju.edu.cn;songpengxiang@spic.com.cn

摘要:

阴离子交换膜电解水制氢融合了碱性电解水和质子交换膜电解水制氢技术的优点,具有电解效率高、响应速度快、成本低等特点,被认为是目前最有前景的可再生绿色能源制氢技术之一。阴离子交换膜(AEM)是提供OH-离子传导和阻隔气体交叉的关键部件,其直接影响了阴离子交换膜电解水系统的性能和使用寿命。然而,目前的AEM隔膜面临着离子电导率低和稳定性差的问题。本文首先介绍了AEM在电解槽中的作用,高性能AEM应满足的性能要求和评价参数,并重点讨论了OH-在AEM中的传输机制与影响因素。接着,本文进一步概述了AEM的结构组成,以及常见的阳离子基团和聚合物主链类型;阐述了不同阳离子基团的降解机理和聚合物主链的特点,重点阐释了阳离子官能团稳定性设计的策略,聚合物主链改性制备的方法,以及AEM性能表现。最后,展望了AEM隔膜未来面临的挑战和潜在研究方向,指出应在设计耐碱稳定性AEM的基础上,通过交联、嵌段共聚、侧链接枝和复合膜技术等策略构建和制备满足实际应用需求的高性能AEM隔膜,为AEM进一步发展提供借鉴和参考。

关键词: 绿电制氢, 阴离子交换膜电解水, 离子传导机理, 离子电导率, 耐碱稳定性

Abstract:

Anion exchange membrane water electrolysis (AEMWE), which integrates the advantages of alkaline water electrolysis and proton exchange membrane water electrolysis, features high electrolysis efficiency, rapid response, and low cost. It is currently regarded as one of the most promising technologies for renewable and sustainable hydrogen production. The anion exchange membrane (AEM) is a critical component responsible for OH conduction and gas crossover prevention, directly influencing the performance and longevity of AEMWE systems. However, existing AEMs face challenges such as low ionic conductivity and poor stability. This review first introduces the role of AEMs in electrolysis cells, outlines the requirements and evaluation parameters for high-performance AEMs, and emphasizes the OH- transport mechanism and influencing factors in AEMs. The structural composition of AEMs, including common types of cationic groups and polymer backbones, is then detailed. The degradation mechanisms of various cationic groups and the characteristics of different polymer backbones are also discussed. We primarily focus on the design strategies for enhancing the stability of cationic functional groups, modification and preparation methods for polymer backbones, and the overall performance of AEMs. Finally, we address the challenges faced by AEM membranes and explore potential future research directions. This review suggests that high-performance AEMs suitable for practical applications should be developed through strategies such as crosslinking, block copolymerization, side-chain grafting, and composite membrane technology, based on the design of alkali-stable AEMs. These approaches provide valuable references and guidance for the advancement of AEMs in hydrogen production technologies.

Key words: hydrogen production by green electricity, anion exchange membrane water electrolysis, ionic conduction mechanism, ion conductivity, alkaline stability

中图分类号: