储能科学与技术 ›› 2024, Vol. 13 ›› Issue (11): 4065-4077.doi: 10.19799/j.cnki.2095-4239.2024.0546
尹康涌1(), 孙磊1, 李浩秒2(), 郭东亮1, 肖鹏1, 王康丽2, 蒋凯2
收稿日期:
2024-06-17
修回日期:
2024-07-25
出版日期:
2024-11-28
发布日期:
2024-11-27
通讯作者:
李浩秒
E-mail:yinkangyong@163.com;lihm@hust.edu.cn
作者简介:
尹康涌(1992—),男,硕士,工程师,从事电化学储能技术研发,E-mail:yinkangyong@163.com;
基金资助:
Kangyong YIN1(), Lei SUN1, Haomiao LI2(), Dongliang GUO1, Peng XIAO1, Kangli WANG2, Kai JIANG2
Received:
2024-06-17
Revised:
2024-07-25
Online:
2024-11-28
Published:
2024-11-27
Contact:
Haomiao LI
E-mail:yinkangyong@163.com;lihm@hust.edu.cn
摘要:
锂离子电池具有无记忆效应、轻量化、环保等特点,因此常作为电动交通工具、电子设备的能源来源,并适用于各种规模的能源存储。在锂离子电池管理系统中,电池的荷电状态(state of charge, SOC)是最关键的指标之一,其准确估计对于实现电池系统的高效能量管理和优化控制至关重要。因此本文提出了一种基于动态噪声自适应无迹卡尔曼滤波的SOC估计方法。首先,通过间歇放电实验获取电池不同SOC下的开路电压,并进一步拟合得到电池的OCV-SOC曲线,接着采用二阶RC等效电路模型对锂离子电池建模,然后通过混合功率脉冲特性工况测试对电池模型参数进行辨识。由于实际应用中锂离子电池为非线性系统且SOC估计精度容易受到噪声的影响,本文在卡尔曼滤波算法的基础上采用无迹变换处理,加入噪声自适应过程,以实现噪声特性自适应估计,动态调整测量噪声与过程噪声,提高算法鲁棒性以及估计精度。最后选取DST与FUDS工况进行验证,结果表明在不同工况下动态噪声自适应无迹卡尔曼滤波算法的估计平均绝对误差、最大绝对误差以及均方根误差相较于自适应无迹卡尔曼滤波、无迹卡尔曼滤波算法均有降低,其平均绝对误差小于0.59%。本文提出的动态噪声自适应无迹卡尔曼滤波算法能够更准确地估计锂离子电池SOC。
中图分类号:
尹康涌, 孙磊, 李浩秒, 郭东亮, 肖鹏, 王康丽, 蒋凯. 基于动态噪声自适应无迹卡尔曼滤波的锂离子电池SOC估计[J]. 储能科学与技术, 2024, 13(11): 4065-4077.
Kangyong YIN, Lei SUN, Haomiao LI, Dongliang GUO, Peng XIAO, Kangli WANG, Kai JIANG. SOC estimation of lithium-ion batteries based on DN-AUKF[J]. Energy Storage Science and Technology, 2024, 13(11): 4065-4077.
1 | 林正廉, 卢玉斌, 陈亮, 等. 基于TVFRLS和SVD-UKF的锂离子电池SOC估算[J]. 电池, 2023, 53(6): 634-638. DOI: 10.19535/j.1001-1579.2023.06.010. |
LIN Z L, LU Y B, CHEN L, et al. SOC estimation for Li-ion battery based on TVFRLS and SVD-UKF[J]. Battery Bimonthly, 2023, 53(6): 634-638. DOI: 10.19535/j.1001-1579.2023.06.010. | |
2 | 刘国安. 液态金属电池状态估计研究[D]. 武汉: 华中科技大学, 2019. |
LIU G A. Study on state estimation of liquid metal battery[D]. Wuhan: Huazhong University of Science and Technology, 2019. | |
3 | 赵珈卉, 田立亭, 程林. 锂离子电池状态估计与剩余寿命预测方法综述[J]. 发电技术, 2023, 44(1): 1-17. DOI: 10.12096/j.2096-4528.pgt.22082. |
ZHAO J H, TIAN L T, CHENG L. Review on state estimation and remaining useful life prediction methods for lithium-ion battery[J]. Power Generation Technology, 2023, 44(1): 1-17. DOI: 10.12096/j.2096-4528.pgt.22082. | |
4 | 袁翔, 张毅. 电动汽车用动力电池模型研究进展[J]. 公路与汽运, 2014(2): 1-8. DOI: 10.3969/j.issn.1671-2668.2014.02.001. |
YUAN X, ZHANG Y. Research progress of power battery model for electric vehicle[J]. Highways & Automotive Applications, 2014(2): 1-8. DOI: 10.3969/j.issn.1671-2668.2014.02.001. | |
5 | 井冰, 芦朋, 李博. 锂电池容量衰减和循环寿命影响因素浅析[J]. 中国安全防范技术与应用, 2018(3): 62-67. |
JING B, LU P, LI B. Analysis on factors affecting capacity attenuation and cycle life of lithium battery[J]. China Security Protection Technology and Application, 2018(3): 62-67. | |
6 | 程琬晴. 电驱无人机能源系统状态估计及预测建模方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. DOI: 10.27061/d.cnki.ghgdu.2021.003255. |
CHENG W Q. Research on state estimation and predictive modeling method of energy system of electrically driven UAV[D]. Harbin: Harbin Institute of Technology, 2021. DOI: 10.27061/d.cnki.ghgdu.2021.003255. | |
7 | 胡言庆, 杨斌, 王宇作, 等. 不同工况下功率型锂离子电池的热特性与仿真研究[J]. 电工电能新技术, 2023, 42(1): 21-28. DOI: 10.12067/ATEEE2204052. |
HU Y Q, YANG B, WANG Y Z, et al. Thermal characteristics and simulation of power lithium-ion batteries under different operating conditions[J]. Advanced Technology of Electrical Engineering and Energy, 2023, 42(1): 21-28. DOI: 10.12067/ATEEE2204052. | |
8 | AHMED R, GAZZARRI J, ONORI S, et al. Model-based parameter identification of healthy and aged Li-ion batteries for electric vehicle applications[J]. SAE International Journal of Alternative Powertrains, 2015, 4(2): 233-247. DOI: 10.4271/2015-01-0252. |
9 | 石琴, 蒋正信, 刘翼闻, 等. 基于分数阶模型的锂离子电池荷电状态估计[J]. 机械工程学报, 2024, 60(8): 224-232, 244. |
SHI Q, JIANG Z X, LIU Y W, et al. Fractional order model-based estimation for state of charge in lithium-ion battery[J]. Journal of Mechanical Engineering, 2024, 60(8): 224-232, 244. | |
10 | 李路路, 陶正顺, 潘庭龙, 等. 锂电池分数阶建模及SOC估计策略[J]. 储能科学与技术, 2023, 12(2): 544-551. DOI: 10.19799/j.cnki.2095-4239.2022.0551. |
LI L L, TAO Z S, PAN T L, et al. Research on fractional modeling and SOC estimation strategy for lithium batteries[J]. Energy Storage Science and Technology, 2023, 12(2): 544-551. DOI: 10.19799/j.cnki.2095-4239.2022.0551. | |
11 | 谭必蓉, 杜建华, 叶祥虎, 等. 基于模型的锂离子电池SOC估计方法综述[J]. 储能科学与技术, 2023, 12(6): 1995-2010. DOI: 10.19799/j.cnki.2095-4239.2023.0016. |
TAN B R, DU J H, YE X H, et al. Overview of SOC estimation methods for lithium-ion batteries based on model[J]. Energy Storage Science and Technology, 2023, 12(6): 1995-2010. DOI: 10.19799/j.cnki.2095-4239.2023.0016. | |
12 | CHEN X, SHEN W X, CAO Z, et al. Sliding mode observer for state of charge estimation based on battery equivalent circuit in electric vehicles[J]. Australian Journal of Electrical & Electronics Engineering, 2012, 9(3): DOI: 10.7158/e11-056.2012.9.3. |
13 | TIAN Y, XIA B Z, WANG M W, et al. Comparison study on two model-based adaptive algorithms for SOC estimation of lithium-ion batteries in electric vehicles[J]. Energies, 2014, 7(12): 8446-8464. DOI: 10.3390/en7128446. |
14 | SUN F C, HU X S, ZOU Y, et al. Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles[J]. Energy, 2011, 36(5): 3531-3540. DOI: 10.1016/j.energy.2011.03.059. |
15 | TIAN Y, LI D, TIAN J D, et al. State of charge estimation of lithium-ion batteries using an optimal adaptive gain nonlinear observer[J]. Electrochimica Acta, 2017, 225: 225-234. DOI: 10.1016/j.electacta.2016.12.119. |
16 | PLETT G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 3. State and parameter estimation[J]. Journal of Power Sources, 2004, 134(2): 277-292. DOI: 10.1016/j.jpowsour.2004.02.033. |
17 | PLETT G L. Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs part 2: Simultaneous state and parameter estimation[J]. Journal of Power Sources, 2006, 161(2): 1369-1384. DOI: 10.1016/j.jpowsour.2006.06.004. |
18 | HE W, WILLIARD N, CHEN C C, et al. State of charge estimation for electric vehicle batteries using unscented Kalman filtering[J]. Microelectronics Reliability, 2013, 53(6): 840-847. DOI: 10.1016/j.microrel.2012.11.010. |
19 | TIAN Y, XIA B Z, SUN W, et al. A modified model based state of charge estimation of power lithium-ion batteries using unscented Kalman filter[J]. Journal of Power Sources, 2014, 270: 619-626. DOI: 10.1016/j.jpowsour.2014.07.143. |
20 | LI J H, KLEE BARILLAS J, GUENTHER C, et al. A comparative study of state of charge estimation algorithms for LiFePO4 batteries used in electric vehicles[J]. Journal of Power Sources, 2013, 230: 244-250. DOI: 10.1016/j.jpowsour.2012.12.057. |
21 | HE H W, QIN H Z, SUN X K, et al. Comparison study on the battery SoC estimation with EKF and UKF algorithms[J]. Energies, 2013, 6(10): 5088-5100. DOI: 10.3390/en6105088. |
22 | XIONG R, HE H W, SUN F C, et al. Evaluation on state of charge estimation of batteries with adaptive extended Kalman filter by experiment approach[J]. IEEE Transactions on Vehicular Technology, 2013, 62(1): 108-117. DOI: 10.1109/TVT.2012.2222684. |
23 | PARTOVIBAKHSH M, LIU G J. An adaptive unscented Kalman filtering approach for online estimation of model parameters and state-of-charge of lithium-ion batteries for autonomous mobile robots[J]. IEEE Transactions on Control Systems Technology, 2015, 23(1): 357-363. DOI: 10.1109/TCST.2014.2317781. |
24 | 杜洪刚, 刘广忱, 李阳, 等. 基于DSP和AUKF的锂离子电池SOC估计[J]. 电源技术, 2022, 46(9): 1009-1012. DOI: 10.3969/j.issn.1002-087X.2022.09.015. |
DU H G, LIU G C, LI Y, et al. SOC estimation of lithium ion batteries based on DSP and adaptive UKF[J]. Chinese Journal of Power Sources, 2022, 46(9): 1009-1012. DOI: 10.3969/j.issn.1002-087X.2022.09.015. | |
25 | 卿崇源, 陈少华, 李瑞鹏, 等. 基于FFRLS-DEKF的锂电池SOC-SOH联合估算研究[J]. 信息技术与信息化, 2024(3): 8-12. |
QING C Y, CHEN S H, LI R P, et al. Research on joint estimation of SOC-SOH of lithium battery based on FFRLS-DEKF[J]. Information Technology and Informatization, 2024(3): 8-12. | |
26 | 钱伟, 赵大中, 郭向伟, 等. 锂电池自适应无迹H∞滤波SOC估计研究[J/OL].储能科学与技术,1-11[2024-09-30].https://doi.org/10.19799/j.cnki.2095-4239.2024.0434. |
QIAN W, ZHAO D Z, GUO X W, WANG Y F, Li W J. State of charge estimation of lithium battery based on Adaptive Unscented H Infinity Filter [J]. Energy Storage Science and Technology, 1-11[2024-09-30].https://doi.org/10.19799/j.cnki. 2095-4239.2024.0434. | |
27 | 武龙星, 庞辉, 晋佳敏, 等. 基于电化学模型的锂离子电池荷电状态估计方法综述[J]. 电工技术学报, 2022, 37(7): 1703-1725. DOI: 10.19595/j.cnki.1000-6753.tces.211030. |
WU L X, PANG H, JIN J M, et al. A review of SOC estimation methods for lithium-ion batteries based on electrochemical model[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1703-1725. DOI: 10.19595/j.cnki.1000-6753.tces.211030. | |
28 | 吴冠文. 基于自适应卡尔曼滤波的锂电池SOC估计[D]. 重庆: 重庆理工大学, 2022. DOI: 10.27753/d.cnki.gcqgx.2022.000292. |
WU G W. SOC estimation of lithium battery based on adaptive Kalman filter[D]. Chongqing: Chongqing University of Technology, 2022. DOI: 10.27753/d.cnki.gcqgx.2022.000292. | |
29 | 杜焕伦, 李哲帆, 石琼林, 等. 基于BP神经网络与DP等效电路的锂离子电池热电耦合模型构建[J/OL].电源学报,1-12[2024-09-30].http://kns.cnki.net/kcms/detail/12.1420.tm.20231219.1348.014.html. |
DU H L, LI Z F, SHI Q L, et al. Construction of a thermoelectric coupling model for lithium-ion batteries based on BP neural network and DP equivalent circuit [J].Journal of Power Supply, 1-12[2024-09-30].http://kns.cnki.net/kcms/detail/12.1420.tm.20231219.1348.014.html. | |
30 | 常小兵, 侯宗尚, 刘连起, 等. 基于电热耦合效应的锂电池荷电状态与温度状态联合估计[J]. 储能科学与技术, 2024, 13(4): 1142-1153. DOI: 10.19799/j.cnki.2095-4239.2023.0889. |
CHANG X B, HOU Z S, LIU L Q, et al. Joint estimation of the state of charge and temperature of lithium batteries based on the electric thermal coupling effect[J]. Energy Storage Science and Technology, 2024, 13(4): 1142-1153. DOI: 10.19799/j.cnki.2095-4239.2023.0889. | |
31 | 何芹. 随机劣化系统可靠性分析与剩余寿命预测方法研究[D]. 长沙: 国防科技大学, 2018. DOI: 10.27052/d.cnki.gzjgu.2018.000137. |
HE Q. Research on reliability analysis and residual life prediction method of stochastic deterioration system[D]. Changsha: National University of Defense Technology, 2018. DOI: 10.27052/d.cnki.gzjgu.2018.000137. | |
32 | 许海深. 导弹导引头天线罩误差斜率补偿研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
XU H S. Research on error slope compensation of missile seeker radome[D]. Harbin: Harbin Institute of Technology, 2018. | |
33 | 张海涛, 刘新天. 基于改进自适应无迹卡尔曼滤波算法的锂电池荷电状态估计[J]. 汽车工程师, 2023(11): 12-18. DOI: 10.20104/j.cnki.1674-6546.20230053. |
ZHANG H T, LIU X T. SOC estimation of lithium battery based on improved AUKF algorithm[J]. Automotive Engineer, 2023(11): 12-18. DOI: 10.20104/j.cnki.1674-6546.20230053. | |
34 | 徐裴行. 锂离子动力电池荷电状态与健康状态联合估计算法研究[D]. 南宁: 广西大学, 2022. DOI: 10.27034/d.cnki.ggxiu. 2022.000709. |
XU P X. Research on joint estimation algorithm of state of charge and health of lithium-ion power battery[D]. Nanning: Guangxi University, 2022. DOI: 10.27034/d.cnki.ggxiu.2022.000709. | |
35 | 刘晟, 王建锋, 刘水宙, 潘清云. MSOA算法改进EKF的锂电池SOC估计方法[J/OL].机械科学与技术,1-9[2024-09-30].https://doi.org/10.13433/j.cnki.1003-8728.20240045. |
LIU S, WANG J F, LIU S Z, PAN Q Y. SOC Estimation of lithium battery using MSOA-optimized EKF [J]. Mechanical Science and Technology, 1-9[2024-09-30].https://doi.org/10.13433/j.cnki.1003-8728.20240045. | |
36 | 孙国帅, 王靖岳, 武旭东, 等. 基于改进无迹卡尔曼滤波锂电池SOC估计[J]. 电工技术, 2023(17): 31-36, 43. DOI: 10.19768/j.cnki.dgjs.2023.17.008. |
SUN G S, WANG J Y, WU X D, et al. SOC estimation of lithium-ion battery based on improved untraced Kalman filtering[J]. Electric Engineering, 2023(17): 31-36, 43. DOI: 10.19768/j.cnki.dgjs.2023.17.008. | |
37 | TANG A H, HUANG Y K, LIU S M, et al. A novel lithium-ion battery state of charge estimation method based on the fusion of neural network and equivalent circuit models[J]. Applied Energy, 2023, 348: 121578. DOI: 10.1016/j.apenergy.2023.121578. |
38 | 乔家璐, 王顺利, 于春梅, 等. 基于加权多新息AEKF的锂电池SOC在线估算[J]. 储能科学与技术, 2021, 10(6): 2318-2325. DOI: 10.19799/j.cnki.2095-4239.2021.0242. |
QIAO J L, WANG S L, YU C M, et al. Novel multiple weighted-AEKF method for online state-of-charge estimation of lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(6): 2318-2325. DOI: 10.19799/j.cnki.2095-4239.2021.0242. | |
39 | XU C, ZHANG E, JIANG K, et al. Dual fuzzy-based adaptive extended Kalman filter for state of charge estimation of liquid metal battery[J]. Applied Energy, 2022, 327: 120091. DOI: 10.1016/j.apenergy.2022.120091. |
40 | 边东生, 杨超. 基于AUKF算法的锂电池SOC估算[J]. 现代机械, 2022(1): 52-56. DOI: 10.13667/j.cnki.52-1046/th.2022.01.012. |
BIAN D S, YANG C. SOC estimation of lithium battery based on AUKF algorithm[J]. Modern Machinery, 2022(1): 52-56. DOI: 10.13667/j.cnki.52-1046/th.2022.01.012. |
[1] | 胡雪峰, 常先雷, 刘肖肖, 徐威, 张文彬. 适用于宽温度范围的锂离子电池SOC估计方法[J]. 储能科学与技术, 2024, 13(9): 2983-2994. |
[2] | 李清波, 张懋慧, 罗英, 吕桃林, 解晶莹. 基于等效电路模型融合电化学原理的锂离子电池荷电状态估计[J]. 储能科学与技术, 2024, 13(9): 3072-3083. |
[3] | 陈峥, 杨博, 赵志刚, 申江卫, 肖仁鑫, 夏雪磊. 考虑锂电池温度和老化的荷电状态估算[J]. 储能科学与技术, 2024, 13(8): 2813-2822. |
[4] | 柳明贤, 李继标, 唐炳南, 杨毅, 肖仁鑫. 基于AUKF的可穿戴式设备用锂离子电池SOE在线估计方法[J]. 储能科学与技术, 2024, 13(5): 1688-1698. |
[5] | 廉高棨, 叶敏, 王桥, 李岩, 麻玉川, 孙乙丁, 杜鹏辉. 基于改进模型与优化自适应CKF的锂离子电池快速变温工况下的SOC估计[J]. 储能科学与技术, 2024, 13(5): 1667-1676. |
[6] | 何林, 刘江岩, 刘彬, 李夔宁, 代帅. 数据分布多样性对锂电池SOC预测的泛化影响[J]. 储能科学与技术, 2024, 13(5): 1677-1687. |
[7] | 李青, 张劭玮, 罗斯伦, 李炬晨, 成海超, 卢丞一. 不同温度下的基于BPNN-AUKF的新型自动水下航行器SOC估计器[J]. 储能科学与技术, 2024, 13(4): 1205-1215. |
[8] | 张爱芳, 魏邦达, 李卓昊, 杨洋, 杨添强, 姚俊, 张杰, 刘飞, 李浩秒, 王康丽, 蒋凯. 全钒液流电池建模及SOC在线估计研究进展[J]. 储能科学与技术, 2024, 13(3): 1036-1049. |
[9] | 张宇, 姚尧, 刘睿, 金雷, 薛斐, 周鹏, 熊斌宇. 基于自适应无迹卡尔曼滤波和经济模型预测控制的全钒液流电池SOC/SOP联合估计方法[J]. 储能科学与技术, 2024, 13(11): 4089-4101. |
[10] | 申江卫, 周灿彪, 舒星, 陈峥, 刘永刚. 宽温度环境下基于改进电化学模型的锂电池荷电状态估计[J]. 储能科学与技术, 2023, 12(9): 2904-2916. |
[11] | 汪红辉, 刘一凡, 储德韧. 不同荷电状态钛酸锂电池高温日历老化研究[J]. 储能科学与技术, 2023, 12(8): 2606-2614. |
[12] | 管鸿盛, 钱诚, 徐炳辉, 孙博, 任羿. 融合自注意力机制与门控循环单元网络的宽工况锂离子电池SOC估计[J]. 储能科学与技术, 2023, 12(7): 2229-2237. |
[13] | 谭必蓉, 杜建华, 叶祥虎, 曹馨, 瞿常. 基于模型的锂离子电池SOC估计方法综述[J]. 储能科学与技术, 2023, 12(6): 1995-2010. |
[14] | 刘峰, 陈海忠. 基于CEEMDAN和ISOA-ELM的锂电池荷电状态预测[J]. 储能科学与技术, 2023, 12(4): 1244-1256. |
[15] | 武鸿鑫, 李爱魁, 董存, 孙树敏, 李广磊, 王士柏. 计及调频备用的储能平抑风电功率波动控制策略[J]. 储能科学与技术, 2023, 12(4): 1194-1203. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||