储能科学与技术 ›› 2024, Vol. 13 ›› Issue (12): 4357-4367.doi: 10.19799/j.cnki.2095-4239.2024.0806

• 热化学储能专刊 • 上一篇    下一篇

金属蜂窝增强相变材料熔化储热试验与数值模拟

柴伟杰1(), 赵锡佳2, 曹世豪2()   

  1. 1.河南建筑职业技术学院
    2.河南工业大学土木工程学院,河南 郑州 450001
  • 收稿日期:2024-09-02 修回日期:2024-09-26 出版日期:2024-12-28 发布日期:2024-12-23
  • 通讯作者: 曹世豪 E-mail:249823918@qq.com;shcao@haut.edu.cn
  • 作者简介:柴伟杰(1981—),男,硕士,工程师/讲师,研究方向为增强相变储能复合材料设计,E-mail: 249823918@qq.com
  • 基金资助:
    国家自然科学基金项目(51908197);河南省科技攻关项目(242102240026)

Experimental and numerical studies on the melting heat storage of metal honeycomb-enhanced phase-change materials

Weijie CHAI1(), Xijia ZHAO2, Shihao CAO2()   

  1. 1.Henan Technical College of Construction
    2.College of Civil Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
  • Received:2024-09-02 Revised:2024-09-26 Online:2024-12-28 Published:2024-12-23
  • Contact: Shihao CAO E-mail:249823918@qq.com;shcao@haut.edu.cn

摘要:

金属蜂窝增强相变储能系统是提升潜热储能效率的先进技术之一。为了研究其熔化储热性能,首先设计出循环水加热系统,解决稳定、均匀热源问题。随后开展恒定温度下增强相变材料的熔化储热试验,获得热量传输和熔化边界演化特征。试验研究发现,金属蜂窝主要通过提升热传导率、削弱自然对流运动以及改变熔化储热模式等角度影响熔化储热效率。为了量化金属蜂窝的影响,建立流-固-热三场耦合下的熔化储热计算模型。计算结果表明,5×5金属蜂窝构建的高导热通道可使热传导率提升39.7倍,同时将液相自然对流传热效应削弱至19.1%,整体熔化储热效率提升了67.1%。储热速率提升主要集中在0<f <0.5阶段,而0.50<f <1阶段的平均储热速率与纯相变材料基本一致。在热传导与自然对流传热的竞争下,熔化储热效率随蜂窝数目增长呈现先减小后增大的变化趋势,其中3×3蜂窝结构的储热效率最低。蜂窝数目在(1×1)~(3×3)的范围内时,热量传输由液相自然对流传热所主导;当蜂窝数目大于3×3后,热量传输将转变为金属蜂窝热传导主导。

关键词: 金属蜂窝, 正十八烷, 熔化储热, 试验测试, 数值模拟

Abstract:

The metal honeycomb-enhanced phase-change energy storage system is an advanced technology for improving latent heat storage efficiency. To study its melting heat storage performance, a circulating water heating system was designed to provide a stable and uniform heat source. Subsequently, a heat storage test of enhanced phase-change materials was conducted at constant temperature, and the transfer and melting boundary evolution characteristics were obtained. The experimental results show that the metal honeycomb affects the melting heat storage efficiency in three ways: it improves thermal conductivity, weakens natural convection, and alters melting heat storage patterns. The effect of the metal honeycomb was quantified by establishing a fluid-solid-thermal coupling calculation model for melting heat storage. The calculation results indicate that the high thermal conductivity channel constructed by a 5 × 5 metal honeycomb can increase thermal conductivity by 39.7 times and reduce the natural heat transfer effect of the liquid phase to 19.1%, with an overall increase in the melting heat storage efficiency of 67.1%. The increase in the heat storage rate is primarily concentrated in the 0 < f < 0.5 stage, whereas the average heat storage rate in the 0.5 < f < 1 stage closely aligns with that of pure PCMs. Under the competition between heat conduction and natural convection heat transfer, the melting heat storage efficiency first decreases and then increases as the cell number increases, with the 3 × 3 honeycomb structure exhibiting the lowest heat storage efficiency. When the number of cells ranges from 1 × 1 to 3 × 3, natural convection in the liquid phase dominates heat transfer. However, when the number of cells exceeds 3 × 3, the heat conduction of the metal honeycomb dominates heat transfer.

Key words: honeycomb metal, n-octadecane, melting heat storage, experimental test, numerical simulation

中图分类号: