1 |
Spencer Dale. Energy Outlook 2022 edition [R]. BP p.l.c., 2022.32-42.4-69.
|
2 |
李政, 陈思源, 董文娟, 等. 碳约束条件下电力行业低碳转型路径研究[J]. 中国电机工程学报, 2021, 41(12): 3987-4001.
|
|
LI Z, CHEN S Y, DONG W J, et al. Low carbon transition pathway of power sector under carbon emission constraints[J]. Proceedings of the CSEE, 2021, 41(12): 3987-4001.
|
3 |
辛保安, 单葆国, 李琼慧, 等. "双碳"目标下"能源三要素"再思考[J]. 中国电机工程学报, 2022, 42(9): 3117-3126.
|
|
XIN B A, SHAN B G, LI Q H, et al. Rethinking of the "three elements of energy" toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2022, 42(9): 3117-3126.
|
4 |
舒印彪, 陈国平, 贺静波, 等. 构建以新能源为主体的新型电力系统框架研究[J]. 中国工程科学, 2021, 23(6): 61-69.
|
|
SHU Y B, CHEN G P, HE J B, et al. Building a new electric power system based on new energy sources[J]. Strategic Study of CAE, 2021, 23(6): 61-69.
|
5 |
孔令国, 史立昊, 石振宇, 等. 基于交替方向乘子法的园区电-氢-热系统低碳优化调度[J]. 电工技术学报, 2023, 38(11): 2932-2944.
|
|
KONG L G, SHI L H, SHI Z Y, et al. Low-carbon optimal dispatch of electric-hydrogen-heat system in park based on alternating direction method of multipliers[J]. Transactions of China Electrotechnical Society, 2023, 38(11): 2932-2944.
|
6 |
丁怡婷. 去年风电光伏发电量首次突破1万亿千瓦时——同比增长21%,占全社会用电量的13.8%[N]. 人民日报, 2023-02-14(10).
|
7 |
姜云鹏, 任洲洋, 李秋燕, 等. 考虑多灵活性资源协调调度的配电网新能源消纳策略[J]. 电工技术学报, 2022, 37(7): 1820-1835.
|
|
JIANG Y P, REN Z Y, LI Q Y, et al. An accommodation strategy for renewable energy in distribution network considering coordinated dispatching of multi-flexible resources[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1820-1835.
|
8 |
方乐, 刘成奎, 陈晓弢, 等. 含光热复合压缩空气储能的分布式综合能源系统容量规划方法[J]. 电工技术学报, 2022, 37(23): 5933-5943.
|
|
FANG L, LIU C K, CHEN X T, et al. Capacity planning method of distributed integrated energy system with solar thermal composite compressed air energy storage[J]. Transactions of China Electrotechnical Society, 2022, 37(23): 5933-5943.
|
9 |
潘超, 范宫博, 王锦鹏, 等. 灵活性资源参与的电热综合能源系统低碳优化[J]. 电工技术学报, 2023, 38(6): 1633-1647.
|
|
PAN C, FAN G B, WANG J P, et al. Low-carbon optimization of electric and heating integrated energy system with flexible resource participation[J]. Transactions of China Electrotechnical Society, 2023, 38(6): 1633-1647.
|
10 |
中华人民共和国住房和城乡建设部. 建筑节能与可再生能源利用通用规范: GB 55015—2021[S]. 北京: 中国建筑工业出版社, 2021.
|
|
Ministry of Housing and Urban-Rural Development of the People's Republic of China. General code for energy efficiency and renewable energy application in buildings: GB 55015—2021[S]. Beijing: China Architecture & Building Press, 2021.
|
11 |
ERMEL C, BIANCHI M V A, CARDOSO A P, et al. Thermal storage integrated into air-source heat pumps to leverage building electrification: A systematic literature review[J]. Applied Thermal Engineering, 2022, 215: 118975.
|
12 |
BAETEN B, ROGIERS F, HELSEN L. Reduction of heat pump induced peak electricity use and required generation capacity through thermal energy storage and demand response[J]. Applied Energy, 2017, 195: 184-195.
|
13 |
严景好, 李杰, 李一鸣, 等. 基于梯度孔隙率金属泡沫的复合相变单元储热性能数值模拟[J]. 储能科学与技术, 2023, 12(8): 2424-2434.
|
|
YAN J H, LI J, LI Y M, et al. Numerical simulation study on heat storage performance of composite phase-change units based on gradient-porosity metal foam[J]. Energy Storage Science and Technology, 2023, 12(8): 2424-2434.
|
14 |
戴宇成, 王增鹏, 刘凯豹, 等. 基于相变材料的储热器及其传热强化研究进展[J]. 储能科学与技术, 2023, 12(2): 431-458.
|
|
DAI Y C, WANG Z P, LIU K B, et al. Research progress of heat storage and heat transfer enhancement based on phase change materials[J]. Energy Storage Science and Technology, 2023, 12(2): 431-458.
|
15 |
INKERI E, TYNJÄLÄ T, NIKKU M. Numerical modeling of latent heat thermal energy storage integrated with heat pump for domestic hot water production[J]. Applied Thermal Engineering, 2022, 214: 118819.
|
16 |
LIU W Y, BIE Y, XU T, et al. Heat transfer enhancement of latent heat thermal energy storage in solar heating system: A state-of-the-art review[J]. Journal of Energy Storage, 2022, 46: 103727.
|
17 |
JIN X, ZHANG H H, HUANG G S, et al. Experimental investigation on the dynamic thermal performance of the parallel solar-assisted air-source heat pump latent heat thermal energy storage system[J]. Renewable Energy, 2021, 180: 637-657.
|
18 |
刘伟, 李振明, 刘铭扬, 等. 高温相变储热材料制备与应用研究进展[J]. 储能科学与技术, 2023, 12(2): 398-430.
|
|
LIU W, LI Z M, LIU M Y, et al. Review of high-temperature phase change heat storage material preparation and applications[J]. Energy Storage Science and Technology, 2023, 12(2): 398-430.
|
19 |
张亚磊, 崔海亭, 王晨, 等. 基于低谷电的太阳能-地源热泵相变蓄热供暖系统研究[J]. 储能科学与技术, 2023, 12(12): 3789-3798.
|
|
ZHANG Y L, CUI H T, WANG C, et al. Research on a phase-change storage heating system of a solar-ground source heat pump based on low current[J]. Energy Storage Science and Technology, 2023, 12(12): 3789-3798.
|
20 |
LE K X, HUANG M J, SHAH N N, et al. Techno-economic assessment of cascade air-to-water heat pump retrofitted into residential buildings using experimentally validated simulations[J]. Applied Energy, 2019, 250: 633-652.
|
21 |
胡康, 徐飞, 陈磊, 等. 利用相变储热提升电力系统可再生能源消纳[J]. 工程热物理学报, 2018, 39(1): 1-7.
|
|
HU K, XU F, CHEN L, et al. Improve the integration of renewable energy sources into power system by the usage of phase-change heat storage[J]. Journal of Engineering Thermophysics, 2018, 39(1): 1-7.
|
22 |
WANG Y B, QUAN Z H, JING H R, et al. Performance and operation strategy optimization of a new dual-source building energy supply system with heat pumps and energy storage[J]. Energy Conversion and Management, 2021, 239: 114204.
|
23 |
JIN X, ZHENG S Q, HUANG G S, et al. Energy and economic performance of the heat pump integrated with latent heat thermal energy storage for peak demand shifting[J]. Applied Thermal Engineering, 2023, 218: 119337.
|
24 |
常健, 宋航, 康宇震, 等. 高温复合相变储热在城市清洁能源改造中的应用[J]. 储能科学与技术, 2023, 12(11): 3471-3478.
|
|
CHANG J, SONG H, KANG Y Z, et al. Application of high-temperature composite phase change heat storage in urban clean energy transformation[J]. Energy Storage Science and Technology, 2023, 12(11): 3471-3478.
|