1 |
PIAO N, GAO X N, YANG H C, et al. Challenges and development of lithium-ion batteries for low temperature environments[J]. eTransportation, 2022, 11: 100145. DOI: 10.1016/j.etran.2021.100145.
|
2 |
RUAN H J, BARRERAS J V, STEINHARDT M, et al. The heating triangle: A quantitative review of self-heating methods for lithium-ion batteries at low temperatures[J]. Journal of Power Sources, 2023, 581: 233484. DOI: 10.1016/j.jpowsour.2023.233484.
|
3 |
明海, 刘巍, 周洪, 等. 军用低温起动电池发展研判[J]. 电源技术, 2020, 44(4): 631-635. DOI: 10.3969/j.issn.1002-087X.2020.04.039.
|
|
MING H, LIU W, ZHOU H, et al. Development of low temperature starting batteries in military applications[J]. Chinese Journal of Power Sources, 2020, 44(4): 631-635. DOI: 10.3969/j.issn.1002-087X.2020.04.039.
|
4 |
HOU J B, YANG M, WANG D Y, et al. Fundamentals and challenges of lithium ion batteries at temperatures between–40 and 60 ℃[J]. Advanced Energy Materials, 2020, 10(18): 1904152. DOI: 10.1002/aenm.201904152.
|
5 |
HOLOUBEK J, YIN Y J, LI M Q, et al. Exploiting mechanistic solvation kinetics for dual-graphite batteries with high power output at extremely low temperature[J]. Angewandte Chemie International Edition, 2019, 58(52): 18892-18897. DOI: 10.1002/anie.201912167.
|
6 |
XU J, WANG X, YUAN N Y, et al. Extending the low temperature operational limit of Li-ion battery to -80 ℃[J]. Energy Storage Materials, 2019, 23: 383-389. DOI: 10.1016/j.ensm.2019.04.033.
|
7 |
LUO L B, CHEN K A, CHEN H, et al. Enabling ultralow-temperature (-70 ℃) lithium-ion batteries: Advanced electrolytes utilizing weak-solvation and low-viscosity nitrile cosolvent[J]. Advanced Materials, 2024, 36(5): 2308881. DOI: 10.1002/adma.202308881.
|
8 |
TAN S, SHADIKE Z, CAI X Y, et al. Review on low-temperature electrolytes for lithium-ion and lithium metal batteries[J]. Electrochemical Energy Reviews, 2023, 6(1): 35. DOI: 10.1007/s41918-023-00199-1.
|
9 |
GUPTA A, MANTHIRAM A. Designing advanced lithium-based batteries for low-temperature conditions[J]. Advanced Energy Materials, 2020, 10(38): 2001972. DOI: 10.1002/aenm.202001972.
|
10 |
HUBBLE D, BROWN D E, ZHAO Y Z, et al. Liquid electrolyte development for low-temperature lithium-ion batteries[J]. Energy & Environmental Science, 2022, 15(2): 550-578. DOI: 10.1039/D1EE01789F.
|
11 |
OUYANG D X, HE Y P, WENG J W, et al. Influence of low temperature conditions on lithium-ion batteries and the application of an insulation material[J]. RSC Advances, 2019, 9(16): 9053-9066. DOI: 10.1039/c9ra00490d.
|
12 |
ZHANG J N, ZHANG J J, LIU T T, et al. Toward low-temperature lithium batteries: Advances and prospects of unconventional electrolytes[J]. Advanced Energy and Sustainability Research, 2021, 2(10): 2100039. DOI: 10.1002/aesr.202100039.
|
13 |
ZHANG N, DENG T, ZHANG S Q, et al. Critical review on low-temperature Li-ion/metal batteries[J]. Advanced Materials, 2022, 34(15): e2107899. DOI: 10.1002/adma.202107899.
|
14 |
李昌豪,汪书苹,杨献坤,等.低温型锂离子电池中的非水电解质研究进展[J/OL].储能科学与技术.[2024-01-01].https://doi.org/10.19799/j.cnki.2095-4239.2024.0116.
|
|
LI C H, WANG S P, YANG X K, et al. Research progress of non-aqueous electrolyte in low-temperature lithium-ion battery[J/OL]. Energy Storage Science and Technology. [2024-01-01]. https://doi.org/10.19799/j.cnki.2095-4239.2024.0116.
|
15 |
SINNOTT R K. Chemical engineering design[M]. 4th ed. Massachusetts: Butterworth-Heinemann, 2005.
|
16 |
LIU J P, YUAN B T, HE N D, et al. Reconstruction of LiF-rich interphases through an anti-freezing electrolyte for ultralow-temperature LiCoO2 batteries[J]. Energy & Environmental Science, 2023, 16(3): 1024-1034. DOI: 10.1039/D2EE02411J.
|
17 |
YANG G H, SHI J L, SHEN C, et al. Improving the cyclability performance of lithium-ion batteries by introducing lithium difluorophosphate (LiPO2F2) additive[J]. RSC Advances, 2017, 7(42): 26052-26059. DOI: 10.1039/C7RA03926C.
|
18 |
LI L C, LV W X, CHEN J, et al. Lithium difluorophosphate (LiPO2F2): An electrolyte additive to help boost low-temperature behaviors for lithium-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(9): 11900-11914. DOI: 10.1021/acsaem.2c02658.
|
19 |
QIU J W, GUO J, LI J H, et al. Insight into the contribution of the electrolyte additive LiBF4 in high-voltage LiCoO2||SiO/C pouch cells[J]. ACS Applied Materials & Interfaces, 2023, 15(49): 56918-56929. DOI: 10.1021/acsami.3c10903.
|
20 |
CHENG H R, SUN Q J, LI L L, et al. Emerging era of electrolyte solvation structure and interfacial model in batteries[J]. ACS Energy Letters, 2022, 7(1): 490-513. DOI: 10.1021/acsenergylett.1c02425.
|
21 |
XIAO P T, YUN X R, CHEN Y F, et al. Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Society Reviews, 2023, 52(15): 5255-5316. DOI: 10.1039/d3cs00151b.
|
22 |
JOHNSON N M, YANG Z Z, LIU Q, et al. Enabling non-carbonate electrolytes for silicon anode batteries using fluoroethylene carbonate[J]. Journal of the Electrochemical Society, 2022, 169(4): 040527. DOI: 10.1149/1945-7111/ac644b.
|