储能科学与技术 ›› 2024, Vol. 13 ›› Issue (7): 2224-2242.doi: 10.19799/j.cnki.2095-4239.2024.0313
收稿日期:
2024-04-10
修回日期:
2024-04-23
出版日期:
2024-07-28
发布日期:
2024-07-23
通讯作者:
刘凯
E-mail:y-lu21@mails.tsinghua.edu.cn;liukai2019@tsinghua.edu.cn
作者简介:
陆洋(1999—),男,博士研究生,研究方向为高性能锂电池电解液,E-mail:y-lu21@mails.tsinghua.edu.cn;
基金资助:
Yang LU(), Shuaishuai YAN, Xiao MA, Zhi LIU, Weili ZHANG, Kai LIU()
Received:
2024-04-10
Revised:
2024-04-23
Online:
2024-07-28
Published:
2024-07-23
Contact:
Kai LIU
E-mail:y-lu21@mails.tsinghua.edu.cn;liukai2019@tsinghua.edu.cn
摘要:
随着电动汽车和消费电子领域的快速发展,由锂电池主导的现代新能源市场对电化学储能技术的性能要求愈发多元化。锂电池的有效工作温度范围是影响其实际应用的关键性能之一,但是在低温环境下,商用碳酸酯基电解液的电导率明显下降,黏度上升,电极和电解液中锂离子的迁移变得困难,导致电池放电容量下降,循环寿命缩短,严重限制了锂电池的实际应用范围,因此,设计高性能的低温电解液用于提高锂电池低温性能是拓宽锂电池实际应用范围的关键。本文针对性分析了锂电池低温性能衰退的原因,从传统电解液优化和新型低温电解液两个方面综述了低温电解液的研究发展现状,归纳总结了低温电解液中有关溶剂、溶质、添加剂和溶剂化结构的相关研究。本文着重介绍了优化锂离子去溶剂化过程在低温电解液设计中的指导性意义,强调了微观溶剂化结构对理解低温下的界面和锂离子的迁移行为的关键作用,旨在从更全面的角度、更有效地指导未来低温电解液的设计,为低温环境下大容量储能系统研究提供借鉴。
中图分类号:
陆洋, 闫帅帅, 马骁, 刘誌, 章伟立, 刘凯. 低温锂电池电解液的研究与应用[J]. 储能科学与技术, 2024, 13(7): 2224-2242.
Yang LU, Shuaishuai YAN, Xiao MA, Zhi LIU, Weili ZHANG, Kai LIU. Low-temperature electrolytes and their application in lithium batteries[J]. Energy Storage Science and Technology, 2024, 13(7): 2224-2242.
1 | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414: 359-367. |
2 | DON M. Building a better battery[J]. MRS Bulletin, 2020, 45(3): 246-247. |
3 | GUPTA A, MANTHIRAM A. Designing advanced lithium‐based batteries for low-temperature conditions[J]. Advanced Energy Materials, 2020, 10(38): 2001972. |
4 | LI Q, LIU G, CHENG H R, et al. Low-temperature electrolyte design for lithium-ion batteries: Prospect and challenges[J]. Chemistry, 2021, 27(64): 15842-15865. |
5 | HUBBLE D, BROWN D E, ZHAO Y Z, et al. Liquid electrolyte development for low-temperature lithium-ion batteries[J]. Energy & Environmental Science, 2022, 15(2): 550-578. |
6 | RODRIGUES M T F, BABU G, GULLAPALLI H, et al. A materials perspective on Li-ion batteries at extreme temperatures[J]. Nature Energy, 2017, 2(8): 17108. |
7 | WANG C Y, ZHANG G S, GE S H, et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature, 2016, 529: 515-518. |
8 | ARAI J, NAKAHIGASHI R. Study of Li metal deposition in lithium ion battery during low-temperature cycle using in situ solid-State7Li nuclear magnetic resonance[J]. Journal of the Electrochemical Society, 2017, 164(13): A3403-A3409. |
9 | WALDMANN T, WILKA M, KASPER M, et al. Temperature dependent ageing mechanisms in Lithium-ion batteries - A Post-Mortem study[J]. Journal of Power Sources, 2014, 262: 129-135. |
10 | MATADI B P, GÉNIES S, DELAILLE A, et al. Irreversible capacity loss of Li-ion batteries cycled at low temperature due to an untypical layer hindering Li diffusion into graphite electrode[J]. Journal of the Electrochemical Society, 2017, 164(12): A2374-A2389. |
11 | JIANG L L, YAN C, YAO Y X, et al. Inhibiting solvent co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries[J]. Angewandte Chemie (International Ed in English), 2021, 60(7): 3402-3406. |
12 | DONG X L, WANG Y G, XIA Y Y. Promoting rechargeable batteries operated at low temperature[J]. Accounts of Chemical Research, 2021, 54(20): 3883-3894. |
13 | ZHANG S S, XU K, JOW T R. Electrochemical impedance study on the low temperature of Li-ion batteries[J]. Electrochimica Acta, 2004, 49(7): 1057-1061. |
14 | ZHANG S S, XU K, JOW T R. The low temperature performance of Li-ion batteries[J]. Journal of Power Sources, 2003, 115(1): 137-140. |
15 | LI Q Y, LU D P, ZHENG J M, et al. Li+-desolvation dictating lithium-ion battery's low-temperature performances[J]. ACS Applied Materials & Interfaces, 2017, 9(49): 42761-42768. |
16 | LI Q Y, JIAO S H, LUO L L, et al. Wide-temperature electrolytes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 18826-18835. |
17 | XU K, VON CRESCE A, LEE U. Differentiating contributions to "ion transfer" barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2010, 26(13): 11538-11543. |
18 | PLICHTA E, HENDRICKSON M, THOMPSON R, et al. Development of low temperature Li-ion electrolytes for NASA and DoD applications[J]. Journal of Power Sources, 2001, 94(2): 160-162. |
19 | ZHANG S S, XU K, ALLEN J L, et al. Effect of propylene carbonate on the low temperature performance of Li-ion cells[J]. Journal of Power Sources, 2002, 110(1): 216-221. |
20 | SMART M C, RATNAKUMAR B V, SURAMPUDI S. Electrolytes for low‐temperature lithium batteries based on ternary mixtures of aliphatic carbonates[J]. Journal of the Electrochemical Society, 2019, 146(2): 486-492. |
21 | PLICHTA E, BEHL W. A low-temperature electrolyte for lithium and lithium-ion batteries[J]. Journal of Power Sources, 2000, 88(2): 192-196. |
22 | XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4417. |
23 | SAZHIN S V, KHIMCHENKO M Y, TRITENICHENKO Y N, et al. Performance of Li-ion cells with new electrolytes conceived for low-temperature applications[J]. Journal of Power Sources, 2000, 87(1): 112-117. |
24 | SMART M C, RATNAKUMAR B V, CHIN K B, et al. Lithium-ion electrolytes containing ester cosolvents for improved low temperature performance[J]. Journal of the Electrochemical Society, 2010, 157(12): A1361-A1374. |
25 | SMART M C, RATNAKUMAR B V, SURAMPUDI S. Use of organic esters as cosolvents in electrolytes for lithium-ion batteries with improved low temperature performance[J]. Journal of the Electrochemical Society, 2002, 149(4): A361. |
26 | HERREYRE S, HUCHET O, BARUSSEAU S, et al. New Li-ion electrolytes for low temperature applications[J]. Journal of Power Sources, 2001, 97: 576-580. |
27 | SHEN X H, LI P, LIU X W, et al. The underlying mechanism for reduction stability of organic electrolytes in lithium secondary batteries[J]. Chemical Science, 2021, 12(26): 9037-9041. |
28 | SMART M, RATNAKUMAR B, RYAN-MOWREY V, et al. Improved performance of lithium-ion cells with the use of fluorinated carbonate-based electrolytes[J]. Journal of Power Sources, 2003, 119: 359-367. |
29 | CHO Y G, KIM Y S, SUNG D G, et al. Nitrile-assistant eutectic electrolytes for cryogenic operation of lithium ion batteries at fast charges and discharges[J]. Energy & Environmental Science, 2014, 7(5): 1737-1743. |
30 | XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618. |
31 | ZHANG J G, XU W, XIAO J, et al. Lithium metal anodes with nonaqueous electrolytes[J]. Chemical Reviews, 2020, 120(24): 13312-13348. |
32 | WANG H S, YU Z A, KONG X, et al. Liquid electrolyte: The nexus of practical lithium metal batteries[J]. Joule, 2022, 6(3): 588-616. |
33 | ZHANG N, DENG T, ZHANG S Q, et al. Critical review on low-temperature Li-ion/metal batteries[J]. Advanced Materials, 2022, 34(15): e2107899. |
34 | XU J, WANG X, YUAN N Y, et al. Extending the low temperature operational limit of Li-ion battery to -80 ℃[J]. Energy Storage Materials, 2019, 23: 383-389. |
35 | THENUWARA A C, SHETTY P P, MCDOWELL M T. Distinct nanoscale interphases and morphology of lithium metal electrodes operating at low temperatures[J]. Nano Letters, 2019, 19(12): 8664-8672. |
36 | ZHAO Y M, HU Z L, ZHAO Z F, et al. Strong solvent and dual lithium salts enable fast-charging lithium-ion batteries operating from–78 to 60 ℃[J]. Journal of the American Chemical Society, 2023, 145(40): 22184-22193. |
37 | LI S Y, ZHAO W, ZHOU Z F, et al. Studies on electrochemical performances of novel electrolytes for wide-temperature-range lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(7): 4920-4926. |
38 | DUDLEY J T, WILKINSON D P, THOMAS G, et al. Conductivity of electrolytes for rechargeable lithium batteries[J]. Journal of Power Sources, 1991, 35(1): 59-82. |
39 | ZHANG S S, XU K, JOW T R. A new approach toward improved low temperature performance of Li-ion battery[J]. Electrochemistry Communications, 2002, 4(11): 928-932. |
40 | ZHANG S S, XU K, JOW T R. Low-temperature performance of Li-ion cells with a LiBF4-based electrolyte[J]. Journal of Solid State Electrochemistry, 2003, 7(3): 147-151. |
41 | ZHANG S S, XU K, JOW T R. Enhanced performance of Li-ion cell with LiBF4-PC based electrolyte by addition of small amount of LiBOB[J]. Journal of Power Sources, 2006, 156(2): 629-633. |
42 | ZHANG S S. An unique lithium salt for the improved electrolyte of Li-ion battery[J]. Electrochemistry Communications, 2006, 8(9): 1423-1428. |
43 | XUE W J, HUANG M J, LI Y T, et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte[J]. Nature Energy, 2021, 6: 495-505. |
44 | MANDAL B K, PADHI A K, SHI Z, et al. New low temperature electrolytes with thermal runaway inhibition for lithium-ion rechargeable batteries[J]. Journal of Power Sources, 2006, 162(1): 690-695. |
45 | QIAO L X, OTEO U, MARTINEZ-IBAÑEZ M, et al. Stable non-corrosive sulfonimide salt for 4-V-class lithium metal batteries[J]. Nature Materials, 2022, 21: 455-462. |
46 | ZHENG J M, ENGELHARD M H, MEI D H, et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries[J]. Nature Energy, 2017, 2(3): 17012. |
47 | JONES J P, SMART M C, KRAUSE F C, et al. The effect of electrolyte additives upon lithium plating during low temperature charging of graphite-LiNiCoAlO2 lithium-ion three electrode cells[J]. Journal of the Electrochemical Society, 2020, 167(2): 020536. |
48 | THENUWARA A C, SHETTY P P, KONDEKAR N, et al. Efficient low-temperature cycling of lithium metal anodes by tailoring the solid-electrolyte interphase[J]. ACS Energy Letters, 2020, 5(7): 2411-2420. |
49 | SMART M C, LUCHT B L, DALAVI S, et al. The effect of additives upon the performance of MCMB/LiNixCo1– xO2 Li-ion cells containing methyl butyrate-based wide operating temperature range electrolytes[J]. Journal of the Electrochemical Society, 2012, 159(6): A739-A751. |
50 | YANG B W, ZHANG H, YU L, et al. Lithium difluorophosphate as an additive to improve the low temperature performance of LiNi0.5Co0.2Mn0.3O2/graphite cells[J]. Electrochimica Acta, 2016, 221: 107-114. |
51 | LIAO B, LI H Y, XU M Q, et al. Designing low impedance interface films simultaneously on anode and cathode for high energy batteries[J]. Advanced Energy Materials, 2018, 8(22): 1800802. |
52 | LIU B, LI Q Y, ENGELHARD M H, et al. Constructing robust electrode/electrolyte interphases to enable wide temperature applications of lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(24): 21496-21505. |
53 | YAMADA Y, SAGANE F, IRIYAMA Y, et al. Kinetics of lithium-ion transfer at the interface between Li0.35La0.55TiO3 and binary electrolytes[J]. The Journal of Physical Chemistry C, 2009, 113(32): 14528-14532. |
54 | HOLOUBEK J, LIU H D, WU Z H, et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature[J]. Nature Energy, 2021, 6: 303-313. |
55 | HOU R L, GUO S H, ZHOU H S. Atomic insights into advances and issues in low-temperature electrolytes[J]. Advanced Energy Materials, 2023, 13(14): 2300053. |
56 | YAO Y X, CHEN X, YAN C, et al. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte[J]. Angewandte Chemie (International Ed in English), 2021, 60(8): 4090-4097. |
57 | MA T, NI Y X, WANG Q R, et al. Optimize lithium deposition at low temperature by weakly solvating power solvent[J]. Angewandte Chemie (International Ed in English), 2022, 61(39): e202207927. |
58 | YAMADA Y, WANG J H, KO S, et al. Advances and issues in developing salt-concentrated battery electrolytes[J]. Nature Energy, 2019, 4: 269-280. |
59 | REN X D, ZOU L F, CAO X, et al. Enabling high-voltage lithium-metal batteries under practical conditions[J]. Joule, 2019, 3(7): 1662-1676. |
60 | CHEN S R, ZHENG J M, MEI D H, et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes[J]. Advanced Materials, 2018, 30(21): e1706102. |
61 | FAN X L, JI X, CHEN L, et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents[J]. Nature Energy, 2019, 4: 882-890. |
62 | XU J J, ZHANG J X, POLLARD T P, et al. Electrolyte design for Li-ion batteries under extreme operating conditions[J]. Nature, 2023, 614: 694-700. |
63 | LU D, LI R H, RAHMAN M M, et al. Ligand-channel-enabled ultrafast Li-ion conduction[J]. Nature, 2024, 627: 101-107. |
64 | ZHANG W L, LU Y, WAN L, et al. Engineering a passivating electric double layer for high performance lithium metal batteries[J]. Nature Communications, 2022, 13: 2029. |
65 | WANG H W, ZHANG J K, ZHANG H D, et al. Regulating interfacial structure enables high-voltage dilute ether electrolytes[J]. Cell Reports Physical Science, 2022, 3: 100919. |
[1] | 陈国贺, 吕培召, 李孟涵, 饶中浩. 锂离子电池热失控传播特性及其抑制策略研究进展[J]. 储能科学与技术, 2024, 13(7): 2470-2482. |
[2] | 李昌豪, 汪书苹, 杨献坤, 曾子琪, 周昕玥, 谢佳. 低温型锂离子电池中的非水电解质研究进展[J]. 储能科学与技术, 2024, 13(7): 2286-2299. |
[3] | 姜森, 陈龙, 孙创超, 王金泽, 李如宏, 范修林. 低温锂电池电解液的发展及展望[J]. 储能科学与技术, 2024, 13(7): 2270-2285. |
[4] | 刘承鑫, 李梓衡, 陈泽宇, 李鹏祥, 陶庆一. 储能锂离子电池高温诱发热失控特性研究[J]. 储能科学与技术, 2024, 13(7): 2425-2431. |
[5] | 廖世接, 魏颖, 黄云辉, 胡仁宗, 许恒辉. 间二氟苯稀释剂稳定电极界面助力低温锂金属电池[J]. 储能科学与技术, 2024, 13(7): 2124-2130. |
[6] | 李想, 刘德重, 袁开, 陈大鹏. 用于低温锂金属电池的固态电解质技术研究进展[J]. 储能科学与技术, 2024, 13(7): 2327-2347. |
[7] | 王美龙, 薛煜瑞, 胡文茜, 杜可遇, 孙瑞涛, 张彬, 尤雅. 低温磷酸铁锂电池用全醚高熵电解液的设计研究[J]. 储能科学与技术, 2024, 13(7): 2131-2140. |
[8] | 王浩天, 王永刚, 董晓丽. 基于有机电极材料的低温电池研究进展[J]. 储能科学与技术, 2024, 13(7): 2259-2269. |
[9] | 黄嘉琦, 熊杰明, 谭恩忠, 孙心语, 程李巍, 王华. 重新审视低温钠金属半电池[J]. 储能科学与技术, 2024, 13(7): 2151-2160. |
[10] | 徐雄文, 莫英, 周望, 姚环东, 洪娟, 雷化, 涂健, 刘继磊. 硬碳动力学特性对钠离子电池低温性能的影响及机制[J]. 储能科学与技术, 2024, 13(7): 2141-2150. |
[11] | 马国政, 陈金伟, 熊兴宇, 杨振忠, 周钢, 胡仁宗. SnSb-Li4Ti5O12 复合负极材料低温高倍率储锂特性研究[J]. 储能科学与技术, 2024, 13(7): 2107-2115. |
[12] | 王文涛, 魏一凡, 黄鲲, 吕国伟, 张思瑶, 唐昕雅, 陈泽彦, 林清源, 母志鹏, 王昆桦, 才华, 陈军. 低温锂离子电池测试标准及研究进展[J]. 储能科学与技术, 2024, 13(7): 2300-2307. |
[13] | 林炜琦, 卢巧瑜, 陈宇鸿, 邱麟媛, 季钰榕, 管联玉, 丁翔. 低温钠离子电池正极材料研究进展[J]. 储能科学与技术, 2024, 13(7): 2348-2360. |
[14] | 李征, 杨振忠, 王琼, 胡仁宗. 基于专利情报分析的锂离子电池用低温电解液的发展现状和研究进展[J]. 储能科学与技术, 2024, 13(7): 2317-2326. |
[15] | 程广玉, 刘新伟, 刘硕, 顾海涛, 王可. 调控电解液溶剂组分实现LCO/C低温18650电池循环寿命显著提升[J]. 储能科学与技术, 2024, 13(7): 2171-2180. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||