储能科学与技术 ›› 2024, Vol. 13 ›› Issue (7): 2243-2258.doi: 10.19799/j.cnki.2095-4239.2024.0362

• 低温电池专刊 • 上一篇    下一篇

聚合物基电解质在低温固态锂电池中的应用与挑战

王宇豪(), 李志勇, 郭新()   

  1. 华中科技大学材料科学与工程学院,材料成形与模具技术全国重点实验室,湖北 武汉 430074
  • 收稿日期:2024-04-24 修回日期:2024-05-29 出版日期:2024-07-28 发布日期:2024-07-23
  • 通讯作者: 郭新 E-mail:yhao_wang@hust.edu.cn;xguo@hust.edu.cn
  • 作者简介:王宇豪(2001—),男,硕士研究生,主要研究方向为固态锂电池,E-mail:yhao_wang@hust.edu.cn
  • 基金资助:
    湖北省自然科学基金(2022CFA031)

Applications and challenges of polymer-based electrolytes in low-temperature solid-state lithium batteries

Yuhao WANG(), Zhiyong LI, Xin GUO()   

  1. School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • Received:2024-04-24 Revised:2024-05-29 Online:2024-07-28 Published:2024-07-23
  • Contact: Xin GUO E-mail:yhao_wang@hust.edu.cn;xguo@hust.edu.cn

摘要:

由于其良好的柔韧性、与电极兼容性好、易加工等特点,聚合物基电解质在固态锂电池中极具应用前景。聚合物基固态电池可在室温下稳定工作,在低温下(≤0 ℃),聚合物电解质离子电导率的降低和缓慢的锂离子传输动力学导致电池极化增大,放电容量急剧衰减,且低温下枝晶生长更加严重,极大限制了固态电池在低温环境中的应用。本文通过对近期相关文献进行探讨,首先介绍了聚合物基电解质在低温下应用面临的挑战和局限,接着阐述了聚合物基电解质的离子传导机制,通过实例重点阐述了低温聚合物基电解质的设计策略及应用,包括添加无机/有机填料、引入液体塑化剂、分子结构工程等优化聚合物基电解质体相离子传导的方法,以及原位聚合和构建良好的固体电解质界面/正极电解质界面等优化聚合物基电解质和电极间界面离子传输的方法。最后,评估并展望了低温聚合物基电解质的传输机制、设计原则、制备方法的不足及创新。本文有望促进聚合物基电解质及其固态锂电池在低温下的应用。

关键词: 聚合物基电解质, 低温, 离子传导, 固态锂电池

Abstract:

Polymer-based electrolytes hold promise as components for solid-state lithium batteries due to their good flexibility, good compatibility with electrodes, and ease of processing. Polymer-based solid-state batteries work stably at room temperature; however, at low temperature (≤0 ℃), the low ionic conductivity of the polymer electrolyte and the slow lithium ion transport kinetics lead to an increase in the polarization of the cell, a sharp decline in its discharge capacity, and severe dendrite growth, which greatly restrict the usage of solid-state batteries at low temperature. After exploring the recent literature, we first introduce the challenges and limitations of polymer-based electrolytes in low-temperature applications, and we then elaborate on the ionic conduction mechanism of polymer-based electrolytes. Using examples, we focus on the design strategies and applications of polymer-based electrolytes at low temperature, including the optimization of ionic conduction in the bulk of polymer-based electrolytes by the addition of inorganic or organic fillers, the introduction of liquid plasticizers, molecular structure engineering, and optimizing ion transport at interfaces between polymer-based electrolytes and electrodes by means of in situ polymerization and the construction of a conductive solid electrolyte interface/cathode electrolyte interface. Finally, we evaluate the transport mechanisms, design principles, and preparation methods for low-temperature, polymer-based electrolytes. This study is expected to promote the application of polymer-based electrolytes and solid-state lithium batteries at low temperatures.

Key words: polymer-based electrolyte, low temperature, ion conduction, solid-state lithium battery

中图分类号: