储能科学与技术 ›› 2024, Vol. 13 ›› Issue (8): 2519-2528.doi: 10.19799/j.cnki.2095-4239.2024.0236
许超锋1,2(), 韩晓蕾1,2, 王进芝2,3,4, 王晓君1(), 刘治明1(), 赵井文2,3,4()
收稿日期:
2024-03-18
修回日期:
2024-04-16
出版日期:
2024-08-28
发布日期:
2024-08-15
通讯作者:
王晓君,刘治明,赵井文
E-mail:xucf@qibebt.ac.cn;wangxiaojunchem@163.com;zmliu@qust.edu.cn;zhaojw@qibebt.ac.cn
作者简介:
许超锋(1999—),男,硕士研究生,研究方向为二次锌电池和储能钠电池的材料开发,E-mail:xucf@qibebt.ac.cn;
基金资助:
Chaofeng XU1,2(), Xiaolei HAN1,2, Jinzhi WANG2,3,4, Xiaojun WANG1(), Zhiming LIU1(), Jingwen ZHAO2,3,4()
Received:
2024-03-18
Revised:
2024-04-16
Online:
2024-08-28
Published:
2024-08-15
Contact:
Xiaojun WANG, Zhiming LIU, Jingwen ZHAO
E-mail:xucf@qibebt.ac.cn;wangxiaojunchem@163.com;zmliu@qust.edu.cn;zhaojw@qibebt.ac.cn
摘要:
二次锌电池是一类低成本、环保和高安全的规模储能技术,但是一直以来锌金属负极与传统水系电解液兼容性不足以及严重的枝晶生长问题限制了电池能量密度和寿命。发展固态二次锌电池是根本解决上述瓶颈问题的有效路线之一,但是,二价锌离子电荷密度高,其在无机陶瓷电解质和聚合物电解质中的室温固相传导极为困难。本工作以具有层状晶体结构的三氟甲基磺酸锌[Zn(TFO)2]作为离子盐主体骨架,通过引入“软碱”的双齿弱配位配体——丁二腈(SN)重塑锌离子的固相配位环境,发展了一类晶态配位化合物的锌离子固态电解质[Zn(TFO)2(SN) n ]。得益于氰基官能团(—CN)与三氟甲基磺酸阴离子(TFO-)的共配位结构,阴离子骨架对锌离子的静电束缚得到了显著降低,锌离子室温固态离子电导率实现了3个数量级的提升[由Zn(TFO)2的1.1×10-9 S/cm提升至1.8×10-6 S/cm]。基于该类固态电解质,Zn||Zn对称电池可实现低极化电压(0.08 V, 0.05 mA/cm2)的长周期锌沉积/溶解循环,并且实现了全固态锌空气电池在室温下的可逆充放电。
中图分类号:
许超锋, 韩晓蕾, 王进芝, 王晓君, 刘治明, 赵井文. 基于弱配位环境的晶态锌离子固态电解质[J]. 储能科学与技术, 2024, 13(8): 2519-2528.
Chaofeng XU, Xiaolei HAN, Jinzhi WANG, Xiaojun WANG, Zhiming LIU, Jingwen ZHAO. Crystalline zinc-ion solid-state electrolytes based on weak coordination environments[J]. Energy Storage Science and Technology, 2024, 13(8): 2519-2528.
表1
Zn(TFO)2(SN)4 固态电解质与其他类型固态电解质性能对比"
锌离子固态电解质 | 离子电导率 /(S/cm) | 电流密度/(mA/cm2)/极化电压/V | 参考 文献 |
---|---|---|---|
Zn(TFO)2(SN)4 | 4.4×10-6(RT) | 0.05/0.08 | 本工作 |
PVHF-Zn(TFO)2 | 1.99×10-6(RT) | 0.2/0.4(寿命<40 h) | [ |
PEO-Zn(TFO)2 | 1.09×10-6(RT) | — | [ |
ZnCl2(PEO)24 | 10-9~10-8(RT) | — | [ |
ZnX2(PEO)20(X=Br, I) | 10-9~10-8(RT) | — | [ |
ZnCl2PEO n (n=4~16) | 10-8~10-7(RT) | — | [ |
1 | MA T H, WANG Z X, WU D X, et al. High-areal-capacity and long-cycle-life all-solid-state battery enabled by freeze drying technology[J]. Energy & Environmental Science, 2023, 16(5): 2142-2152. DOI: 10.1039/D3EE00420A. |
2 | LIU W, ZHAO Q W, YU H M, et al. Metallic particles-induced surface reconstruction enabling highly durable zinc metal anode[J]. Advanced Functional Materials, 2023, 33(38): 2302661. DOI: 10.1002/adfm.202302661. |
3 | PARKER J F, CHERVIN C N, PALA I R, et al. Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion[J]. Science, 2017, 356(6336): 415-418. DOI: 10.1126/science.aak9991. |
4 | ZHENG J X, ZHAO Q, TANG T, et al. Reversible epitaxial electrodeposition of metals in battery anodes[J]. Science, 2019, 366(6465): 645-648. DOI: 10.1126/science.aax6873. |
5 | SHEN Y H, LIU B, LIU X R, et al. Water-in-salt electrolyte for safe and high-energy aqueous battery[J]. Energy Storage Materials, 2021, 34: 461-474. DOI: 10.1016/j.ensm.2020.10.011. |
6 | ZHANG L, RODRÍGUEZ-PÉREZ I A, JIANG H, et al. ZnCl2 "water-in-salt" electrolyte transforms the performance of vanadium oxide as a Zn battery cathode[J]. Advanced Functional Materials, 2019, 29(30): 1902653. DOI: 10.1002/adfm.201902653. |
7 | SUN L, YAO Y Q, DAI L X, et al. Sustainable and high-performance Zn dual-ion batteries with a hydrogel-based water-in-salt electrolyte[J]. Energy Storage Materials, 2022, 47: 187-194. DOI: 10.1016/j.ensm.2022.02.012. |
8 | ZHANG Y N, WU D S, HUANG F L, et al. "Water-in-salt" nonalkaline gel polymer electrolytes enable flexible zinc-air batteries with ultra-long operating time[J]. Advanced Functional Materials, 2022, 32(34): 2203204. DOI: 10.1002/adfm.202203204. |
9 | WANG J, TIAN J X, LIU G X, et al. In situ insight into the interfacial dynamics in "water-in-salt" electrolyte-based aqueous zinc batteries[J]. Small Methods, 2023, 7(6): 2300392. DOI: 10.1002/smtd.202300392. |
10 | DI S L, NIE X Y, MA G Q, et al. Zinc anode stabilized by an organic-inorganic hybrid solid electrolyte interphase[J]. Energy Storage Materials, 2021, 43: 375-382. DOI: 10.1016/j.ensm. 2021.09.021. |
11 | CHEN J Z, ZHOU W J, QUAN Y H, et al. Ionic liquid additive enabling anti-freezing aqueous electrolyte and dendrite-free Zn metal electrode with organic/inorganic hybrid solid electrolyte interphase layer[J]. Energy Storage Materials, 2022, 53: 629-637. DOI: 10.1016/j.ensm.2022.10.004. |
12 | HOU Z G, ZHANG X Q, DONG M F, et al. A large format aqueous rechargeable LiMn2O4/Zn battery with high energy density and long cycle life[J]. Science China Materials, 2021, 64(3): 783-788. DOI: 10.1007/s40843-020-1503-7. |
13 | KUNDU D P, HOSSEINI VAJARGAH S, WAN L W, et al. Aqueous vs. nonaqueous Zn-ion batteries: Consequences of the desolvation penalty at the interface[J]. Energy & Environmental Science, 2018, 11(4): 881-892. DOI: 10.1039/C8EE00378E. |
14 | WANG F, BORODIN O, GAO T, et al. Highly reversible zinc metal anode for aqueous batteries[J]. Nature Materials, 2018, 17: 543-549. DOI: 10.1038/s41563-018-0063-z. |
15 | KANG L Z, ZHENG J L, YUE K, et al. Amino-functionalized interfacial layer enables an ultra-uniform amorphous solid electrolyte interphase for high-performance aqueous zinc-based batteries[J]. Small, 2023, 19(44): DOI: 10.1002/smll.202304094. |
16 | LIN Y X, LI Y, MAI Z X, et al. Interfacial regulation via anionic surfactant electrolyte additive promotes stable (002)-textured zinc anodes at high depth of discharge[J]. Advanced Energy Materials, 2023, 13(38): 2301999. DOI: 10.1002/aenm.202301999. |
17 | AN Y L, XU B G, TIAN Y, et al. Reversible Zn electrodeposition enabled by interfacial chemistry manipulation for high-energy anode-free Zn batteries[J]. Materials Today, 2023, 70: 93-103. DOI: 10.1016/j.mattod.2023.09.008. |
18 | XIE S Y, LI Y, DONG L B. Stable anode-free zinc-ion batteries enabled by alloy network-modulated zinc deposition interface[J]. Journal of Energy Chemistry, 2023, 76: 32-40. DOI: 10.1016/j.jechem.2022.08.040. |
19 | CAO L S, LI D, HU E Y, et al. Solvation structure design for aqueous Zn metal batteries[J]. Journal of the American Chemical Society, 2020, 142(51): 21404-21409. DOI: 10.1021/jacs.0c09794. |
20 | ZHENG J X, ARCHER L A. Controlling electrochemical growth of metallic zinc electrodes: Toward affordable rechargeable energy storage systems[J]. Science Advances, 2021, 7(2): eabe0219. DOI: 10.1126/sciadv.abe0219. |
21 | DUERAMAE I, OKHAWILAI M, KASEMSIRI P, et al. Properties enhancement of carboxymethyl cellulose with thermo-responsive polymer as solid polymer electrolyte for zinc ion battery[J]. Scientific Reports, 2020, 10(1): 12587. DOI: 10.1038/s41598-020-69521-x. |
22 | YANG P H, FENG C Z, LIU Y P, et al. Thermal self-protection of zinc-ion batteries enabled by smart hygroscopic hydrogel electrolytes[J]. Advanced Energy Materials, 2020, 10(48): 2002898. DOI: 10.1002/aenm.202002898. |
23 | ZHU J C, YAO M J, HUANG S, et al. Thermal-gated polymer electrolytes for smart zinc-ion batteries[J]. Angewandte Chemie International Edition, 2020, 59(38): 16480-16484. DOI: 10.1002/anie.202007274. |
24 | LIU Y, ZOU H Q, HUANG Z L, et al. In situ polymerization of 1, 3-dioxane as a highly compatible polymer electrolyte to enable the stable operation of 4.5 V Li-metal batteries[J]. Energy & Environmental Science, 2023, 16(12): 6110-6119. DOI: 10.1039/D3EE02797J. |
25 | LI J C, MA C, CHI M F, et al. Solid electrolyte: The key for high-voltage lithium batteries[J]. Advanced Energy Materials, 2015, 5(4): 1401408. DOI: 10.1002/aenm.201401408. |
26 | BAN A H, PARK M S, PARK T H, et al. Nonflammable ionic liquid-based quasi-solid-state electrolytes for highly safe sodium-ion batteries[J]. ECS Meeting Abstracts, 2021, (6): 405. DOI: 10. 1149/ma2021-016405mtgabs. |
27 | LI Y S, YANG X D, HE Y, et al. A novel ultrathin multiple-kinetics-enhanced polymer electrolyte editing enabled wide-temperature fast-charging solid-state zinc metal batteries[J]. Advanced Functional Materials, 2024, 34(4): 2307736. DOI: 10.1002/adfm. 202307736. |
28 | QIU B, LIANG K Y, HUANG W, et al. Crystal-facet manipulation and interface regulation via TMP-modulated solid polymer electrolytes toward high-performance Zn metal batteries[J]. Advanced Energy Materials, 2023, 13(32): 2301193. DOI: 10. 1002/aenm.202301193. |
29 | 黄渭彬, 张彪, 范金成, 等. ZIF-8复合PEO基固态电解质的制备与改性研究[J]. 储能科学与技术, 2023, 12(4): 1083-1092. DOI: 10.19799/j.cnki.2095-4239.2022.0532. |
HUANG W B, ZHANG B, FAN J C, et al. Preparation and modification of ZIF-8 composite PEO based solid electrolyte[J]. Energy Storage Science and Technology, 2023, 12(4): 1083-1092. DOI: 10.19799/j.cnki.2095-4239.2022.0532. | |
30 | IMANAKA N, TAMURA S. Development of multivalent ion conducting solid electrolytes[J]. Bulletin of the Chemical Society of Japan, 2011, 84(4): 353-362. DOI: 10.1246/bcsj.20100178. |
31 | IKEDA S, KANBAYASHI Y, NOMURA K, et al. Solid electrolytes with multivalent cation conduction (2): Zinc ion conduction in Zn-Zr-PO4 system[J]. Solid State Ionics, 1990, 40: 79-82. DOI: 10.1016/0167-2738(90)90291-X. |
32 | JOHNSON D A, NELSON P G. Factors determining the ligand field stabilization energies of the hexaaqua 2+ complexes of the first transition series and the Irving-williams order[J]. Inorganic Chemistry, 1995, 34(22): 5666-5671. DOI: 10.1021/ic00126a041. |
33 | HOU Z G, DONG M F, XIONG Y L, et al. A high-energy and long-life aqueous Zn/birnessite battery via reversible water and Zn2+ coinsertion[J]. Small, 2020, 16(26): e2001228. DOI: 10.1002/smll.202001228. |
34 | RICHENS D T. Ligand substitution reactions at inorganic centers[J]. Chemical Reviews, 2005, 105(6): 1961-2002. DOI: 10.1021/cr030705u. |
35 | PRAKASH P, FALL B, AGUIRRE J, et al. A soft co-crystalline solid electrolyte for lithium-ion batteries[J]. Nature Materials, 2023, 22(5): 627-635. DOI: 10.1038/s41563-023-01508-1. |
36 | WANG J, ZHAO Z, LU G, et al. Room-temperature fast zinc-ion conduction in molecule-flexible solids[J]. Materials Today Energy, 2021, 20: 100630. DOI: 10.1016/j.mtener.2020.100630. |
37 | ALARCO P J, ABU-LEBDEH Y, ABOUIMRANE A, et al. The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors[J]. Nature Materials, 2004, 3: 476-481. DOI: 10.1038/nmat1158. |
38 | GOODENOUGH J B, HONG H Y P, KAFALAS J A. Fast Na+-ion transport in skeleton structures[J]. Materials Research Bulletin, 1976, 11(2): 203-220. DOI: 10.1016/0025-5408(76)90077-5. |
39 | HONG H Y P. Crystal structures and crystal chemistry in the system Na1+ xZr2SixP3- xO12[J]. Materials Research Bulletin, 1976, 11(2): 173-182. DOI: 10.1016/0025-5408(76)90073-8. |
40 | DINNEBIER R, SOFINA N, HILDEBRANDT L, et al. Crystal structures of the trifluoromethyl sulfonates M(SO3CF3)2 (M=Mg, Ca, Ba, Zn, Cu) from synchrotron X-ray powder diffraction data[J]. Acta Crystallographica Section B, Structural Science, 2006, 62(Pt 3): 467-473. DOI: 10.1107/S0108768106009517. |
41 | MANTHIRAM A, GOODENOUGH J B. Layered lithium cobalt oxide cathodes[J]. Nature Energy, 2021, 6: 323. DOI: 10.1038/s41560-020-00764-8. |
42 | ROEDERN E, KÜHNEL R S, REMHOF A, et al. Magnesium ethylenediamine borohydride as solid-state electrolyte for magnesium batteries[J]. Scientific Reports, 2017, 7: 46189. DOI: 10.1038/srep 46189. |
43 | IMANAKA N, TAMURA S. Development of multivalent ion conducting solid electrolytes[J]. Bulletin of the Chemical Society of Japan, 2011, 84(4): 353-362. DOI: 10.1246/bcsj.20100178. |
44 | SHEN Y N, DENG G H, GE C Q, et al. Solvation structure around the Li+ ion in succinonitrile-lithium salt plastic crystalline electrolytes[J]. Physical Chemistry Chemical Physics, 2016, 18(22): 14867-14873. DOI: 10.1039/C6CP02878K. |
45 | UMAR Y, MORSY M A. Ab initio and DFT studies of the molecular structures and vibrational spectra of succinonitrile[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2007, 66(4/5): 1133-1140. DOI: 10.1016/j.saa. 2006.05.026. |
46 | DAIGLE J C, ARNOLD A, VIJH A, et al. Solid-state NMR study of new copolymers as solid polymer electrolytes[J]. Magnetochemistry, 2018, 4(1): 13. DOI: 10.3390/magnetochemistry4010013. |
47 | FREITAG K M, KIRCHHAIN H, VAN WÜLLEN L, et al. Enhancement of Li ion conductivity by electrospun polymer fibers and direct fabrication of solvent-free separator membranes for Li ion batteries[J]. Inorganic Chemistry, 2017, 56(4): 2100-2107. DOI: 10.1021/acs.inorgchem.6b02781. |
48 | BOTTKE P, RETTENWANDER D, SCHMIDT W, et al. Ion dynamics in solid electrolytes: NMR reveals the elementary steps of Li+ hopping in the garnet Li6.5La3Zr1.75Mo0.25O12[J]. Chemistry of Materials, 2015, 27(19): 6571-6582. DOI: 10.1021/acs.chemmater.5b02231. |
49 | YANG H, HUQ R, FARRINGTON G C. Conductivity in PEO-based Zn(II) polymer electrolytes[J]. Solid State Ionics, 1990, 40: 663-665. DOI: 10.1016/0167-2738(90)90093-7. |
50 | VIJAYAKUMAR V, GHOSH M, KURIAN M, et al. An in situ cross-linked nonaqueous polymer electrolyte for zinc-metal polymer batteries and hybrid supercapacitors[J]. Small, 2020, 16(35): e2002528. DOI: 10.1002/smll.202002528. |
51 | ZENG Z Q, LIU G Z, JIANG Z P, et al. Zinc bis(2-ethylhexanoate), a homogeneous and bifunctional additive, to improve conductivity and lithium deposition for poly (ethylene oxide) based all-solid-state lithium metal battery[J]. Journal of Power Sources, 2020, 451: 227730. DOI: 10.1016/j.jpowsour. 2020.227730. |
52 | KARAN S, SAHU T B, SAHU M, et al. Characterization of ion transport property in hot-press cast solid polymer electrolyte (SPE) films: [PEO: Zn(CF3SO3)2][J]. Ionics, 2017, 23(10): 2721-2726. DOI: 10.1007/s11581-017-2036-7. |
53 | OVERBURY S H, BERTRAND P A, SOMORJAI G A. Surface composition of binary systems. Prediction of surface phase diagrams of solid solutions[J]. Chemical Reviews, 1975, 75(5): 547-560. DOI: 10.1021/cr60297a001. |
54 | BRUNO M. A revised thermodynamic model for crystal surfaces. I. Theoretical aspects[J]. CrystEngComm, 2017, 19(42): 6314-6324. DOI: 10.1039/C7CE01397C. |
55 | CHEN Z, LI X L, WANG D H, et al. Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures[J]. Energy & Environmental Science, 2021, 14(6): 3492-3501. DOI: 10.1039/D1EE00409C. |
56 | PLANCHA M J C, RANGEL C M, SEQUEIRA C A C. Pseudo-equilibrium phase diagrams for PEO-Zn salts-based electrolytes[J]. Solid State Ionics, 1999, 116(3/4): 293-300. DOI: 10.1016/S0167-2738(98)00356-7. |
57 | YANG H, FARRINGTON G C. Poly(ethylene oxide)-based Zn(II) halide electrolytes[J]. Journal of the Electrochemical Society, 1992, 139(6): 1646-1654. DOI: 10.1149/1.2069471. |
[1] | 陈晔, 李晋, 吴候福, 张少禹, 储玉喜, 卓萍. 大容量储能电池模组热失控传播行为与燃爆风险分析[J]. 储能科学与技术, 2024, 13(8): 2803-2812. |
[2] | 黄煜峰, 梁焕超, 许磊. 基于卡尔曼滤波算法优化Transformer模型的锂离子电池健康状态预测方法[J]. 储能科学与技术, 2024, 13(8): 2791-2802. |
[3] | 孔妍妍, 张熊, 安亚斌, 李晨, 孙现众, 王凯, 马衍伟. MOF衍生多孔碳基材料的制备及其在锂离子电容器负极中的应用进展[J]. 储能科学与技术, 2024, 13(8): 2665-2678. |
[4] | 姚远, 宗若奇, 盖建丽. 钠离子电池锑基及铋基金属负极材料研究进展[J]. 储能科学与技术, 2024, 13(8): 2649-2664. |
[5] | 巩文豪, 李蒙, 张涛, 张若涛, 刘艳侠. 高能量长续航无人机电池的开发及制备[J]. 储能科学与技术, 2024, 13(8): 2550-2558. |
[6] | 范利君, 吴保周, 陈珂君. 不同形貌FeS2 的可控制备及储钠特性研究[J]. 储能科学与技术, 2024, 13(8): 2541-2549. |
[7] | 张结雨, 张顺, 李宁, 曾芳磊, 丁建宁. 阻燃凝胶聚合物电解质的制备及其性能研究[J]. 储能科学与技术, 2024, 13(8): 2529-2540. |
[8] | 杜陈强, 聂周缓, 王慧楠, 张纪伟, 张经纬. TiO2/TiN异质结内建电场的构筑及多硫化锂催化转化性能研究[J]. 储能科学与技术, 2024, 13(8): 2499-2510. |
[9] | 郝定邦, 栗永利. 高倍率和长循环稳定性钠离子电池正极材料Na0.85Ni0.3Fe0.2Mn0.5O1.95F0.05 @CuO的性能研究[J]. 储能科学与技术, 2024, 13(8): 2489-2498. |
[10] | 王志勇, 蔡君瑶, 佘英奇, 钟树林, 潘康华. 氮杂环导电高分子改性锂离子电池石墨负极材料[J]. 储能科学与技术, 2024, 13(8): 2511-2518. |
[11] | 赵晓军, 王颖超, 陈猛, 杨鹏, 安占旺, 刘建利, 吴迪. 动力电池系统内模组汇流排可靠性浅析[J]. 储能科学与技术, 2024, 13(7): 2450-2458. |
[12] | 姜森, 陈龙, 孙创超, 王金泽, 李如宏, 范修林. 低温锂电池电解液的发展及展望[J]. 储能科学与技术, 2024, 13(7): 2270-2285. |
[13] | 陈晓羽, 刘宇, 白一帆, 应佳俊, 吕营, 万利佳, 胡军平, 陈小玲. 镍钴氢氧化物正极材料制备及镍锌电池性能研究[J]. 储能科学与技术, 2024, 13(7): 2377-2385. |
[14] | 陆洋, 闫帅帅, 马骁, 刘誌, 章伟立, 刘凯. 低温锂电池电解液的研究与应用[J]. 储能科学与技术, 2024, 13(7): 2224-2242. |
[15] | 廖世接, 魏颖, 黄云辉, 胡仁宗, 许恒辉. 间二氟苯稀释剂稳定电极界面助力低温锂金属电池[J]. 储能科学与技术, 2024, 13(7): 2124-2130. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||