储能科学与技术 ›› 2024, Vol. 13 ›› Issue (8): 2665-2678.doi: 10.19799/j.cnki.2095-4239.2024.0050

• 储能材料与器件 • 上一篇    下一篇

MOF衍生多孔碳基材料的制备及其在锂离子电容器负极中的应用进展

孔妍妍1,2(), 张熊2(), 安亚斌2, 李晨2, 孙现众2, 王凯2, 马衍伟1,2()   

  1. 1.郑州大学材料科学与工程学院,河南 郑州 450001
    2.中国科学院电工研究所,北京 100190
  • 收稿日期:2024-01-17 修回日期:2024-03-01 出版日期:2024-08-28 发布日期:2024-08-15
  • 通讯作者: 张熊,马衍伟 E-mail:kongyanyan@mail.iee.ac.cn;zhangxiong@mail.iee.ac.cn;ywma@mail.iee.ac.cn
  • 作者简介:孔妍妍(1999—),女,硕士研究生,研究方向为锂离子电容器电极材料,E-mail:kongyanyan@mail.iee.ac.cn

Recent advances in preparation of MOF-derived porous carbon-based materials and their applications in anodes of lithium-ion capacitors

Yanyan KONG1,2(), Xiong ZHANG2(), Yabin AN2, Chen LI2, Xianzhong SUN2, Kai WANG2, Yanwei MA1,2()   

  1. 1.School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
    2.Chinese Academy of Sciences Institute of Electrical Engineering, Beijing 100190, China
  • Received:2024-01-17 Revised:2024-03-01 Online:2024-08-28 Published:2024-08-15
  • Contact: Xiong ZHANG, Yanwei MA E-mail:kongyanyan@mail.iee.ac.cn;zhangxiong@mail.iee.ac.cn;ywma@mail.iee.ac.cn

摘要:

锂离子电容器是一种兼具锂离子电池和超级电容器两者特点的新型功率型储能器件。然而,锂离子电容器电池型负极的动力学要慢于电容器型正极,导致其功率密度低、循环稳定性差等问题。金属有机骨架(metal-organic frameworks,MOF)衍生多孔碳基材料以其大比表面积的多孔结构,以及出色的化学稳定性等优点,成为电化学储能领域的研究热点。本文首先分析了锂离子电容器电极材料面对的挑战,阐述了锂离子电容器的储能机制。随后分析了碳化温度、热处理时间等碳化工艺对MOF衍生多孔碳基材料理化性质的影响,并着重讨论了受碳化工艺影响制备得到的不同产物组分类型。随后总结了MOF衍生多孔碳基材料在锂离子电容器中的应用进展,提出了与其他碳材料进行复合或掺杂改性是实现高功率密度、高能量密度的锂离子电容器负极材料的重要途径,最后对MOF衍生碳基电极材料的发展前景予以展望。

关键词: 锂离子电容器, 负极材料, 金属有机框架, 多孔碳

Abstract:

Lithium-ion capacitors represent novel power storage devices amalgamating the features of both lithium-ion batteries and supercapacitors. However, the sluggish dynamics of the lithium-ion capacitor's battery-type negative electrode, compared to the capacitor-type positive electrode, lead to a diminished power density and compromised cycle stability. Notably, porous carbon-based materials derived from metal-organic frameworks (MOFs) have emerged as a focal point in electrochemical energy storage research owing to their expansive specific surface area, porous structure, and exceptional chemical stability. This study analyzes the challenges associated with electrode materials of lithium-ion capacitors and elucidates the energy storage mechanism of lithium-ion capacitors. Subsequently, the influence of carbonization temperature and heat treatment time on the physicochemical properties of MOF-derived porous carbon-based materials is examined. Moreover, diverse products generated through the carbonization process are discussed. Furthermore, the advancements in utilizing MOF-derived porous carbon-based materials in lithium-ion capacitors are reviewed. Finally, the crucial role of composite or doping modifications with other carbon materials in improving the power and energy densities for anode materials of lithium-ion capacitors is emphasized.

Key words: lithium-ion capacitors, anode materials, metal-organic framework, porous carbon materials

中图分类号: