储能科学与技术 ›› 2024, Vol. 13 ›› Issue (8): 2665-2678.doi: 10.19799/j.cnki.2095-4239.2024.0050
孔妍妍1,2(), 张熊2(), 安亚斌2, 李晨2, 孙现众2, 王凯2, 马衍伟1,2()
收稿日期:
2024-01-17
修回日期:
2024-03-01
出版日期:
2024-08-28
发布日期:
2024-08-15
通讯作者:
张熊,马衍伟
E-mail:kongyanyan@mail.iee.ac.cn;zhangxiong@mail.iee.ac.cn;ywma@mail.iee.ac.cn
作者简介:
孔妍妍(1999—),女,硕士研究生,研究方向为锂离子电容器电极材料,E-mail:kongyanyan@mail.iee.ac.cn;
Yanyan KONG1,2(), Xiong ZHANG2(), Yabin AN2, Chen LI2, Xianzhong SUN2, Kai WANG2, Yanwei MA1,2()
Received:
2024-01-17
Revised:
2024-03-01
Online:
2024-08-28
Published:
2024-08-15
Contact:
Xiong ZHANG, Yanwei MA
E-mail:kongyanyan@mail.iee.ac.cn;zhangxiong@mail.iee.ac.cn;ywma@mail.iee.ac.cn
摘要:
锂离子电容器是一种兼具锂离子电池和超级电容器两者特点的新型功率型储能器件。然而,锂离子电容器电池型负极的动力学要慢于电容器型正极,导致其功率密度低、循环稳定性差等问题。金属有机骨架(metal-organic frameworks,MOF)衍生多孔碳基材料以其大比表面积的多孔结构,以及出色的化学稳定性等优点,成为电化学储能领域的研究热点。本文首先分析了锂离子电容器电极材料面对的挑战,阐述了锂离子电容器的储能机制。随后分析了碳化温度、热处理时间等碳化工艺对MOF衍生多孔碳基材料理化性质的影响,并着重讨论了受碳化工艺影响制备得到的不同产物组分类型。随后总结了MOF衍生多孔碳基材料在锂离子电容器中的应用进展,提出了与其他碳材料进行复合或掺杂改性是实现高功率密度、高能量密度的锂离子电容器负极材料的重要途径,最后对MOF衍生碳基电极材料的发展前景予以展望。
中图分类号:
孔妍妍, 张熊, 安亚斌, 李晨, 孙现众, 王凯, 马衍伟. MOF衍生多孔碳基材料的制备及其在锂离子电容器负极中的应用进展[J]. 储能科学与技术, 2024, 13(8): 2665-2678.
Yanyan KONG, Xiong ZHANG, Yabin AN, Chen LI, Xianzhong SUN, Kai WANG, Yanwei MA. Recent advances in preparation of MOF-derived porous carbon-based materials and their applications in anodes of lithium-ion capacitors[J]. Energy Storage Science and Technology, 2024, 13(8): 2665-2678.
表1
MOF前驱体衍生不同成分类型的多孔碳基材料及其应用于锂离子电容器的电化学性能"
类型 | MOF 前驱体 | 衍生 负极材料 | 正极 材料 | 电压 窗口/V | 最高能量密度/(Wh/kg) @对应功率密度/(kW/kg) | 最高功率密度/(kW/kg) @对应能量密度/Wh/kg | 电流密度/(A/g) @循环次数 | 循环容量保持率 | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
类型一 | Fe-BTC | OLC | AC | 2.2~3.8 | 195@0.138 | 17.717@92 | 1@4000 | 61.5% | [ |
Zn-MOF | Z-T-PC | PC | 1.5~4 | 95.8@0.2644 | 46@54.6 | 2@5000 | 83.67% | [ | |
ZIF-8 | HCF-2 | a-HCF-2 | 1~4.5 | 162@0.48 | 15.8@114.5 | 5@15000 | 76% | [ | |
类型二 | ZIF-67 | Co@N-C | HPC | 0~4 | 125.28@0.2 | 10@38.33 | 1@1000 | 91.74% | [ |
Mn-MOF | MnO2 @C-NS | NPCs | 0.01~4 | 166@0.55 | 3.9@49.3 | 1@5000 | 91% | [ | |
CoZn-MOF | Co3ZnC@NC | MPC | 1.0~4.5 | 141.4@0.275 | 10.3@15.2 | 1@1000 | 80% | [ | |
CoZn-MOF | Co3ZnC@NC | 预锂化石墨 | 1~3 | 67.1@0.12 | 4.1@1.48 | 0.1@1000 | — | [ | |
类型三 | Mn-MOF | Mn2SnO4@C | CSBC | 1.5~4.5 | 217.9@0.21 | 21@25 | 2@5000 | 79% | [ |
ZIF-67 | CoTe2@N-C | HPC | 0~4 | 144.5@0.2 | 10@38.89 | 1@1000 | 90.95% | [ | |
ZIF-67 | CoSn x @CPAN | PDPC | 1.5~4.2 | 143@0.285 | 22.8@41 | 2@5000 | 82.9% | [ | |
钼基MOF | MoO2@rGO | PANI@rGO | 1.25~4.5 | 241.7@0.2875 | 28.75@117.8 | 5@10000 | 96% | [ |
1 | WANG H W, ZHU C R, CHAO D L, et al. Nonaqueous hybrid lithium-ion and sodium-ion capacitors[J]. Advanced Materials, 2017, 29(46): 1702093. DOI: 10.1002/adma.201702093. |
2 | XIAO X H, DENG X L, TIAN Y, et al. Ultrathin two-dimensional nanosheet metal-organic frameworks with high-density ligand active sites for advanced lithium-ion capacitors[J]. Nano Energy, 2022, 103: 107797. DOI: 10.1016/j.nanoen.2022.107797. |
3 | LIANG J X, WANG D W. Design rationale and device configuration of lithium-ion capacitors[J]. Advanced Energy Materials, 2022, 12(25): 2200920. DOI: 10.1002/aenm.202200920. |
4 | 邹才能, 赵群, 张国生, 等. 能源革命: 从化石能源到新能源[J]. 天然气工业, 2016, 36(1): 1-10. DOI: 10.3787/j.issn.1000-0976.2016.01.001. |
ZOU C N, ZHAO Q, ZHANG G S, et al. Energy revolution: From a fossil energy era to a new energy era[J]. Natural Gas Industry, 2016, 36(1): 1-10. DOI: 10.3787/j.issn.1000-0976.2016.01.001. | |
5 | KONG P, ZHU L, LI F R, et al. Self-supporting electrode composed of SnSe nanosheets, thermally treated protein, and reduced graphene oxide with enhanced pseudocapacitance for advanced sodium-ion batteries[J]. ChemElectroChem, 2019, 6(22): 5642-5650. DOI: 10.1002/celc.201901517. |
6 | MAO Z F, WANG H W, CHAO D L, et al. Al2O3-assisted confinement synthesis of oxide/carbon hollow composite nanofibers and application in metal-ion capacitors[J]. Small, 2020, 16(33): 2001950. DOI: 10.1002/smll.202001950. |
7 | TANG B Y, SHAN L T, LIANG S Q, et al. Issues and opportunities facing aqueous zinc-ion batteries[J]. Energy & Environmental Science, 2019, 12(11): 3288-3304. DOI: 10.1039/C9EE02526J. |
8 | 李晋, 王青松, 孔得朋, 等. 锂离子电池储能安全评价研究进展[J]. 储能科学与技术, 2023, 12(7): 2282-2301. DOI: 10.19799/j.cnki.2095-4239.2023.0252. |
LI J, WANG Q S, KONG D P, et al. Research progress on the safety assessment of lithium-ion battery energy storage[J]. Energy Storage Science and Technology, 2023, 12(7): 2282-2301. DOI: 10.19799/j.cnki.2095-4239.2023.0252. | |
9 | 乔亮波, 张晓虎, 孙现众, 等. 电池-超级电容器混合储能系统研究进展[J]. 储能科学与技术, 2022, 11(1): 98-106. DOI: 10.19799/j.cnki.2095-4239.2021.0229. |
QIAO L B, ZHANG X H, SUN X Z, et al. Advances in battery-supercapacitor hybrid energy storage system[J]. Energy Storage Science and Technology, 2022, 11(1): 98-106. DOI: 10.19799/j.cnki.2095-4239.2021.0229. | |
10 | CAI P, ZOU K Y, ZOU G Q, et al. Quinone/ester-based oxygen functional group-incorporated full carbon Li-ion capacitor for enhanced performance[J]. Nanoscale, 2020, 12(6): 3677-3685. DOI: 10.1039/c9nr10339b. |
11 | SHAO Y L, EL-KADY M F, SUN J Y, et al. Design and mechanisms of asymmetric supercapacitors[J]. Chemical Reviews, 2018, 118(18): 9233-9280. DOI: 10.1021/acs.chemrev.8b00252. |
12 | 胡涛, 张熊, 安亚斌, 等. 锂离子电容器碳正极材料的研究进展[J]. 化工学报, 2020, 71(6): 2530-2546. DOI: 10.11949/0438-1157.20200338. |
HU T, ZHANG X, AN Y B, et al. Research progress of carbon cathode materials for Li-ion capacitors[J]. CIESC Journal, 2020, 71(6): 2530-2546. DOI: 10.11949/0438-1157.20200338. | |
13 | MA Y F, CHANG H C, ZHANG M, et al. Graphene-based materials for lithium-ion hybrid supercapacitors[J]. Advanced Materials, 2015, 27(36): 5296-5308. DOI: 10.1002/adma. 201501622. |
14 | ZHU G Y, CHEN T, WANG L, et al. High energy density hybrid lithium-ion capacitor enabled by Co3ZnC@N-doped carbon nanopolyhedra anode and microporous carbon cathode[J]. Energy Storage Materials, 2018, 14: 246-252. DOI: 10.1016/j.ensm.2018.04.009. |
15 | 汪晨阳, 张安邦, 常增花, 等. 锂离子电池用多孔电极结构设计及制备技术进展[J]. 材料工程, 2022, 50(1): 67-79. DOI: 10.11868/j.issn.1001-4381.2021.000021. |
WANG C Y, ZHANG A B, CHANG Z H, et al. Progress in structure design and preparation of porous electrodes for lithium ion batteries[J]. Journal of Materials Engineering, 2022, 50(1): 67-79. DOI: 10.11868/j.issn.1001-4381.2021.000021. | |
16 | 张利星, 张熊, 李晨, 等. 煤基碳负极材料在锂离子电池中的应用研究进展[J]. 石油化工高等学校学报, 2022, 35(6): 10-18. DOI: 10.3969/j.issn.1006-396X.2022.06.002. |
ZHANG L X, ZHANG X, LI C, et al. Research progress of application of coal-based carbon anode materials in lithium-ion batteries[J]. Journal of Petrochemical Universities, 2022, 35(6): 10-18. DOI: 10.3969/j.issn.1006-396X.2022.06.002. | |
17 | GUAN C, SUMBOJA A, ZANG W J, et al. Decorating Co/CoNx nanoparticles in nitrogen-doped carbon nanoarrays for flexible and rechargeable zinc-air batteries[J]. Energy Storage Materials, 2019, 16: 243-250. DOI: 10.1016/j.ensm.2018.06.001. |
18 | SHEBERLA D, BACHMAN J C, ELIAS J S, et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance[J]. Nature Materials, 2017, 16(2): 220-224. DOI: 10.1038/nmat4766. |
19 | ZHAO S L, WANG Y, DONG J C, et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution[J]. Nature Energy, 2016, 1(12): 16184. DOI: 10.1038/nenergy. 2016.184. |
20 | SONG G J, SHI Y X, JIANG S, et al. Recent progress in MOF-derived porous materials as electrodes for high-performance lithium-ion batteries[J]. Advanced Functional Materials, 2023, 33(42): 2303121. DOI: 10.1002/adfm.202303121. |
21 | 张晓虎, 孙现众, 张熊, 等. 锂离子电容器在新能源领域应用展望[J]. 电工电能新技术, 2020, 39(11): 48-58. DOI: 10.12067/ATEEE2001022. |
ZHANG X H, SUN X Z, ZHANG X, et al. Prospect of lithium-ion capacitor application in new energy field[J]. Advanced Technology of Electrical Engineering and Energy, 2020, 39(11): 48-58. DOI: 10.12067/ATEEE2001022. | |
22 | AUGUSTYN V, COME J, LOWE M A, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance[J]. Nature Materials, 2013, 12(6): 518-522. DOI: 10.1038/nmat3601. |
23 | BROUSSE T, BÉLANGER D, LONG J W. To be or not to be pseudocapacitive?[J]. Journal of the Electrochemical Society, 2015, 162(5): A5185-A5189. DOI: 10.1149/2.0201505jes. |
24 | CHOI C, ASHBY D S, BUTTS D M, et al. Achieving high energy density and high power density with pseudocapacitive materials[J]. Nature Reviews Materials, 2020, 5: 5-19. DOI: 10.1038/s41578-019-0142-z. |
25 | CHEN J L, QIAN J J. Insights on MOF-derived metal-carbon nanostructures for oxygen evolution[J]. Dalton Transactions, 2024, 53(7): 2903-2916. DOI: 10.1039/D3DT04263D. |
26 | HAN Q Q, JIN T, LI Y, et al. Tin nanoparticles embedded in an N-doped microporous carbon matrix derived from ZIF-8 as an anode for ultralong-life and ultrahigh-rate lithium-ion batteries[J]. Inorganic Chemistry Frontiers, 2019, 6(5): 1238-1244. DOI: 10.1039/C9QI00219G. |
27 | LI Z X, ZHANG X, LIU Y C, et al. Controlling the BET surface area of porous carbon by using the Cd/C ratio of a Cd-MOF precursor and enhancing the capacitance by activation with KOH[J]. Chemistry-A European Journal, 2016, 22(49): 17734-17747. DOI: 10.1002/chem.201603072. |
28 | MARPAUNG F, KIM M, KHAN J H, et al. Metal-organic framework (MOF)-derived nanoporous carbon materials[J]. Chemistry-An Asian Journal, 2019, 14(9): 1331-1343. DOI: 10.1002/asia.201900026. |
29 | WU K, CAO X, LI M Y, et al. Bottom-up synthesis of MoS2/CNTs hollow polyhedron with 1T/2H hybrid phase for superior potassium-ion storage[J]. Small, 2020, 16(43): e2004178. DOI: 10.1002/smll.202004178. |
30 | LI H X, CHEN J T, ZHANG L, et al. A metal-organic framework-derived pseudocapacitive titanium oxide/carbon core/shell heterostructure for high performance potassium ion hybrid capacitors[J]. Journal of Materials Chemistry A, 2020, 8(32): 16302-16311. DOI: 10.1039/D0TA04912C. |
31 | ZHENG F C, YANG Y, CHEN Q W. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework[J]. Nature Communications, 2014, 5: 5261. DOI: 10.1038/ncomms6261. |
32 | CENDROWSKI K, SKUMIAL P, SPERA P, et al. Thermally induced formation of zinc oxide nanostructures with tailoring morphology during metal organic framework (MOF-5) carbonization process[J]. Materials & Design, 2016, 110: 740-748. DOI: 10.1016/j.matdes.2016.08.043. |
33 | SRINIVAS G, KRUNGLEVICIUTE V, GUO Z X, et al. Exceptional CO2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume[J]. Energy & Environmental Science, 2014, 7(1): 335-342. DOI: 10.1039/C3EE42918K. |
34 | ZHAN F Y, WANG H Y, HE Q Q, et al. Metal-organic frameworks and their derivatives for metal-ion (Li, Na, K and Zn) hybrid capacitors[J]. Chemical Science, 2022, 13(41): 11981-12015. DOI: 10.1039/d2sc04012c. |
35 | REN J C, HUANG Y L, ZHU H, et al. Recent progress on MOF-derived carbon materials for energy storage[J]. Carbon Energy, 2020, 2(2): 176-202. DOI: 10.1002/cey2.44. |
36 | WANG H F, CHEN L Y, PANG H, et al. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions[J]. Chemical Society Reviews, 2020, 49(5): 1414-1448. DOI: 10.1039/c9cs00906j. |
37 | YANG Y Q, DONG H, WANG Y, et al. Synthesis of octahedral like Cu-BTC derivatives derived from MOF calcined under different atmosphere for application in CO oxidation[J]. Journal of Solid State Chemistry, 2018, 258: 582-587. DOI: 10.1016/j.jssc.2017.11.033. |
38 | KONG L J, ZHONG M, LIU Y Y, et al. Ultra-small V2O3 embedded N-doped porous carbon nanorods with superior cycle stability for sodium-ion capacitors[J]. Journal of Power Sources, 2018, 405: 37-44. DOI: 10.1016/j.jpowsour.2018.10.016. |
39 | 顾涛, 任晶, 郑建勇, 等. MOF衍生多孔碳材料的制备以及在LIBs负极中的应用[J]. 功能材料, 2021, 52(10): 10001-10007, 10097. DOI: 10.3969/j.issn.1001-9731.2021.10.001. |
GU T, REN J, ZHENG J Y, et al. Preparation of MOF-derivedporous carbon materials and their applications in anode materials for LIBs[J]. Journal of Functional Materials, 2021, 52(10): 10001-10007, 10097. DOI: 10.3969/j.issn.1001-9731. 2021.10.001. | |
40 | WANG B R, HU Y T, PAN Z H, et al. MOF-derived manganese oxide/carbon nanocomposites with raised capacitance for stable asymmetric supercapacitor[J]. RSC Advances, 2020, 10(57): 34403-34412. DOI: 10.1039/D0RA05494A. |
41 | GE P, HOU H S, LI S J, et al. Tailoring rod-like FeSe2 coated with nitrogen-doped carbon for high-performance sodium storage[J]. Advanced Functional Materials, 2018, 28(30): 1801765. DOI: 10.1002/adfm.201801765. |
42 | LI A, TONG Y, CAO B, et al. MOF-derived multifractal porous carbon with ultrahigh lithium-ion storage performance[J]. Scientific Reports, 2017, 7: 40574. DOI: 10.1038/srep40574. |
43 | HU M, REBOUL J, FURUKAWA S, et al. Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon[J]. Journal of the American Chemical Society, 2012, 134(6): 2864-2867. DOI: 10.1021/ja208940u. |
44 | LI K, QIN R C, XIONG Y Q, et al. MOF-derived octahedral-shaped Fe3O4@C composites for lithium storage[J]. Journal of Electronic Materials, 2023, 52(5): 3311-3320. DOI: 10.1007/s11664-023-10301-4. |
45 | ZHANG J, XU C, ZHANG Y, et al. Structural and compositional analysis of MOF-derived carbon nanomaterials for the oxygen reduction reaction [J]. Chemical Communications, 2024.https://api.semanticscholar.org/CorpusID:267547216. |
46 | YANG L, CHEN J W, PARK S, et al. Recent progress on metal-organic framework derived carbon and their composites as anode materials for potassium-ion batteries[J]. Energy Materials, 2023, 3(5): 300042. DOI: 10.20517/energymater.2023.29. |
47 | WU L M, LIU Y G, ZHAO H, et al. MOF-derived long spindle-like carbon-coated ternary transition-metal-oxide composite for lithium storage[J]. ACS Omega, 2022, 7(19): 16837-16846. DOI: 10.1021/acsomega.2c01988. |
48 | YAO L, GU Q F, YU X B. Three-dimensional MOFs@MXene aerogel composite derived MXene threaded hollow carbon confined CoS nanoparticles toward advanced alkali-ion batteries[J]. ACS Nano, 2021, 15(2): 3228-3240. DOI: 10.1021/acsnano.0c09898. |
49 | DIMAS CHANDRA PERMANA A, OMAR A, GUILLERMO GONZALEZ-MARTINEZ I, et al. MOF-derived onion-like carbon with superior surface area and porosity for high performance lithium-ion capacitors[J]. Batteries & Supercaps, 2022, 5(5): 2100353. DOI: 10.1002/batt.202100353. |
50 | OMICHI K, RAMOS-SANCHEZ G, RAO R, et al. Origin of excess irreversible capacity in lithium-ion batteries based on carbon nanostructures[J]. Journal of the Electrochemical Society, 2015, 162(10): A2106-A2115. DOI: 10.1149/2.0591510jes. |
51 | CHEN C, LI X R, LI J X, et al. A high specific surface area porous carbon skeleton derived from MOF for high-performance lithium-ion capacitors[J]. IOP Conference Series: Earth and Environmental Science, 2021, 844(1): 012002. DOI: 10.1088/1755-1315/844/1/012002. |
52 | LI S N, XU Y N, LIU W H, et al. Carbon nanocages bridged with graphene enable fast kinetics for dual-carbon lithium-ion capacitors[J]. Green Energy & Environment, 2024, 9(3): 573-583. DOI: 10.1016/j.gee.2022.10.006. |
53 | DUBAL D P, JAYARAMULU K, SUNIL J, et al. Metal-organic framework (MOF) derived electrodes with robust and fast lithium storage for Li-ion hybrid capacitors[J]. Advanced Functional Materials, 2019, 29(19): 1900532. DOI: 10.1002/adfm. 201900532. |
54 | LI L F, WEN Y D, HAN G K, et al. Tailoring the stability of Fe-N-C via pyridinic nitrogen for acid oxygen reduction reaction[J]. Chemical Engineering Journal, 2022, 437: 135320. DOI: 10.1016/j.cej.2022.135320. |
55 | XU X L, ZHANG X M, KUANG Z C, et al. Investigation on the demetallation of Fe-N-C for oxygen reduction reaction: The influence of structure and structural evolution of active site[J]. Applied Catalysis B: Environmental, 2022, 309: 121290. DOI: 10.1016/j.apcatb.2022.121290. |
56 | OCK I W, LEE J, KANG J K. Metal-organic framework-derived anode and polyaniline chain networked cathode with mesoporous and conductive pathways for high energy density, ultrafast rechargeable, and long-life hybrid capacitors[J]. Advanced Energy Materials, 2020, 10(48): 2001851. DOI: 10.1002/aenm.202001851. |
57 | BIAN Y, WANG S J, JIN D D, et al. A general anion exchange strategy to transform metal-organic framework embedded nanofibers into high-performance lithium-ion capacitors[J]. Nano Energy, 2020, 75: 104935. DOI: 10.1016/j.nanoen.2020.104935. |
58 | DUAN Y K, LI Z W, ZHANG S C, et al. Metal-organic frameworks (MOFs)-derived Mn2SnO4@C anode based on dual lithium storage mechanism for high-performance lithium-ion capacitors[J]. Chemical Engineering Journal, 2023, 477: 146914. DOI: 10.1016/j.cej.2023.146914. |
59 | ZHANG H J, JIA Q C, KONG L B. Metal-organic framework-derived nitrogen-doped three-dimensional porous carbon loaded CoTe2 nanoparticles as anodes for high energy lithium-ion capacitors[J]. Journal of Energy Storage, 2022, 47: 103617. DOI: 10.1016/j.est.2021.103617. |
60 | JIA Q C, ZHANG H J, KONG L B. Cobalt nanoparticles encapsulated by nitrogen-doped carbon framework as anode materials for high performance lithium-ion capacitors[J]. Journal of Electroanalytical Chemistry, 2021, 893: 115326. DOI: 10.1016/j.jelechem.2021.115326. |
61 | TANG Y F, LI H W, ZHANG R N, et al. Co3ZnC@NC material derived from ZIF-8 for lithium-ion capacitors[J]. ACS Omega, 2021, 6(43): 28528-28537. DOI: 10.1021/acsomega.1c02271. |
[1] | 姚远, 宗若奇, 盖建丽. 钠离子电池锑基及铋基金属负极材料研究进展[J]. 储能科学与技术, 2024, 13(8): 2649-2664. |
[2] | 范利君, 吴保周, 陈珂君. 不同形貌FeS2 的可控制备及储钠特性研究[J]. 储能科学与技术, 2024, 13(8): 2541-2549. |
[3] | 郝峻丰, 朱璟, 申晓宇, 岑官骏, 乔荣涵, 张新新, 田孟羽, 金周, 詹元杰, 孙蔷馥, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2024.04.01—2024.05.31)[J]. 储能科学与技术, 2024, 13(7): 2361-2376. |
[4] | 冯仁超, 董宇, 朱新宇, 刘偲, 陈胜, 李达, 郭若禹, 王斌, 王炯辉, 李宁, 苏岳锋, 吴锋. 钠离子电池氧化石墨基负极研究进展[J]. 储能科学与技术, 2024, 13(6): 1835-1848. |
[5] | 朱璟, 郝峻丰, 孙蔷馥, 张新新, 申晓宇, 岑官骏, 乔荣涵, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2024.2.1—2024.3.31)[J]. 储能科学与技术, 2024, 13(5): 1398-1416. |
[6] | 孙蔷馥, 申晓宇, 岑官骏, 乔荣涵, 朱璟, 郝峻丰, 张新新, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2023.12.1—2024.1.31)[J]. 储能科学与技术, 2024, 13(3): 725-741. |
[7] | 刘新, 毛喜玲, 闫欣雨, 王俊强, 李孟委. 三维孔道NiMn-MOF电极材料制备及电化学性能研究[J]. 储能科学与技术, 2024, 13(2): 361-369. |
[8] | 郭秀丽, 周小龙, 邹才能, 唐永炳. 水系双离子电池的研究进展与展望[J]. 储能科学与技术, 2024, 13(2): 462-479. |
[9] | 张新新, 申晓宇, 岑官骏, 乔荣涵, 朱璟, 郝峻丰, 孙蔷馥, 田孟羽, 金周, 詹元杰, 武怿达, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2023.10.1—2023.11.30)[J]. 储能科学与技术, 2024, 13(1): 252-269. |
[10] | 周向阳, 胡颖杰, 梁家浩, 周其杰, 文康, 陈松, 杨娟, 唐晶晶. 天然鳞片石墨球化尾料的高性能负极材料制备及储锂特性研究[J]. 储能科学与技术, 2023, 12(9): 2767-2777. |
[11] | 江婉薇, 梁呈景, 钱历, 刘梅城, 朱孟想, 马骏. 锡基三维石墨烯泡沫调控及其锂电池负极性能[J]. 储能科学与技术, 2023, 12(9): 2746-2751. |
[12] | 岑官骏, 乔荣涵, 申晓宇, 朱璟, 郝峻丰, 孙蔷馥, 张新新, 田孟羽, 金周, 詹元杰, 武怿达, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2023.6.1—2023.7.31)[J]. 储能科学与技术, 2023, 12(9): 3003-3018. |
[13] | 张鼎, 叶子贤, 刘镇铭, 易群, 史利娟, 郭慧娟, 黄毅, 王莉, 何向明. 钠离子电池黑磷基负极材料研究进展[J]. 储能科学与技术, 2023, 12(8): 2482-2490. |
[14] | 乔荣涵, 朱璟, 申晓宇, 岑官骏, 郝峻丰, 季洪祥, 田孟羽, 金周, 詹元杰, 武怿达, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2023.4.1—2023.5.31)[J]. 储能科学与技术, 2023, 12(7): 2333-2348. |
[15] | 张吉栋, 杨展, 黄建国. 基于天然纤维素物质的C/TiO2/CuMoO4 微-纳结构复合纤维材料构筑及其电化学性能[J]. 储能科学与技术, 2023, 12(5): 1616-1624. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||