储能科学与技术 ›› 2024, Vol. 13 ›› Issue (8): 2704-2712.doi: 10.19799/j.cnki.2095-4239.2024.0131

• 储能系统与工程 • 上一篇    下一篇

磷酸铁锂电池组在电网调峰工况下的液冷技术研究

陈悦林(), 马宏忠(), 朱沐雨, 宣文婧, 王思涵   

  1. 河海大学,江苏 南京 211100
  • 收稿日期:2024-02-19 修回日期:2024-04-12 出版日期:2024-08-28 发布日期:2024-08-15
  • 通讯作者: 马宏忠 E-mail:1225827175@qq.com;hhumhz@163.com
  • 作者简介:陈悦林(1998—),男,硕士,研究方向为电化学储能安全技术。E-mail:1225827175@qq.com
  • 基金资助:
    国家自然科学基金(51577050);国网江苏省电力有限公司科技项目(J2022158)

Research on the liquid cooling technology of a lithium iron phosphate battery pack under a peak load regulation in a power grid

Yuelin CHEN(), Hongzhong MA(), Muyu ZHU, Wenjing XUAN, Sihan WANG   

  1. Hohai University, Nanjing 211100, Jiangsu, China
  • Received:2024-02-19 Revised:2024-04-12 Online:2024-08-28 Published:2024-08-15
  • Contact: Hongzhong MA E-mail:1225827175@qq.com;hhumhz@163.com

摘要:

调峰是电池储能电站重要运行的工况,电池冷却对储能电站电池安全运行至关重要,本文对磷酸铁锂电池组在调峰工况下的液冷技术进行研究。首先对磷酸铁锂电池组在实际调峰工况下的产热以及电池的液冷冷却进行研究,建立磷酸铁锂电池组在调峰工况下的产热模型以及液冷冷却模型,其次对磷酸铁锂电池组在调峰工况下的液冷模型进行优化,通过有限元仿真分析,最后,采用调节冷却液流向以及合理调节流量等方式对液冷冷却进行优化。仿真与实验结果表明:合理设置不同冷却管冷却液流向可有效提高液冷散热的均温性,通过仿真温度云图的对比并创新地采用ΔT (最大温度与平均温度的差值)来体现不同方案均温性的优劣;增大流量虽然有助于降温,但液冷倍率达到2.0以上时,冷却效果增加有限,但能耗大大增加,通过仿真结果提出最佳的流量范围为1.5~2.0。本文所提方案均已通过实验验证,并在储能电站电池冷却进行实际应用。

关键词: 锂离子电池, 调峰, 液冷, 有限元仿真

Abstract:

Peak shaving is an important operating condition for battery energy storage power stations, and battery cooling is crucial for the safe operation of batteries. This study investigated the liquid cooling technology of lithium iron phosphate battery packs under peak shaving conditions. First, the heat generation and liquid cooling of the lithium iron phosphate battery pack under actual peak shaving conditions were studied, and heat generation and liquid cooling models of the lithium iron phosphate battery pack under peak shaving conditions were established. Second, the liquid cooling model of the lithium iron phosphate battery pack under peak shaving conditions was optimized through a finite element simulation analysis. Finally, the liquid cooling was optimized by adjusting the flow direction of the cooling liquid and adjusting the flow rate. The simulation and experimental results showed that a reasonable setting of different cooling-pipe coolant flow directions can effectively improve the uniformity of liquid cooling heat dissipation. By comparing the simulated temperature cloud map and innovatively adopting the difference between the maximum and average temperatures, the superiority and inferiority of the uniformity of different schemes can be reflected. Although increasing the flow rate helped to cool down, when the liquid cooling rate reached or exceeded 2.0, the increase in the cooling effect was limited, but the energy consumption increased significantly. Through simulation results, the optimal flow rate range was proposed to be between 1.5 and 2.0. The proposed solutions have been experimentally validated and applied in for battery cooling in energy storage power stations.

Key words: lithium ion batteries, peak shaving, liquid cooling, finite element simulation

中图分类号: