储能科学与技术 ›› 2024, Vol. 13 ›› Issue (9): 2933-2951.doi: 10.19799/j.cnki.2095-4239.2024.0708

• AI辅助先进电池设计与应用专刊 • 上一篇    下一篇

机器学习强化的电化学阻抗谱技术及其在锂离子电池研究中的应用

何智峰1(), 陶远哲1, 胡泳钢1,2, 王其聪4, 杨勇1,2,3()   

  1. 1.厦门大学固体表面物理化学国家重点实验室,化学与化工学院化学系
    2.厦门大学能源材料化学协同创新中心(iChEM),化学与化工学院化学系
    3.厦门大学能源学院
    4.厦门大学信息学院;计算机系,福建 厦门 361005
  • 收稿日期:2024-07-31 修回日期:2024-08-22 出版日期:2024-09-28 发布日期:2024-09-20
  • 通讯作者: 杨勇 E-mail:hzf13107618190@163.com;yyang@xmu.edu.cn
  • 作者简介:何智峰(2000—),男,硕士研究生,研究方向为机器学习在锂离子电池老化研究中的应用,E-mail:hzf13107618190@163.com
  • 基金资助:
    国家重点研发计划专项(2021YFB2401800)

Machine learning-enhanced electrochemical impedance spectroscopy for lithium-ion battery research

Zhifeng HE1(), Yuanzhe TAO1, Yonggang HU1,2, Qicong Wang4, Yong YANG1,2,3()   

  1. 1.State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University
    2.Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University
    3.College of Energy, Xiamen University
    4.Department of Computer Science, School of Informatics, Xiamen University, Xiamen 361005, Fujian, China
  • Received:2024-07-31 Revised:2024-08-22 Online:2024-09-28 Published:2024-09-20
  • Contact: Yong YANG E-mail:hzf13107618190@163.com;yyang@xmu.edu.cn

摘要:

随着电气化的发展,全球动力电池和储能电池的需求迅猛增加。然而,人们对电池使用安全性和可靠性的关注使得电池老化状态的精准诊断和预测成为电池界重要且富有挑战的研究领域之一。电化学阻抗谱(EIS)因其可以解耦电池内部不同频域过程常被用于电池复杂老化过程状态的解析,而通过机器学习方法不仅可以高效获取和解析EIS数据,而且可促进对电池老化和失效机制的深入理解。本文综述了近年来机器学习方法在EIS技术中的应用,重点讨论了通过机器学习获取和解析EIS数据,进而实现对电池寿命评估预测。此外,本文讨论了数据融合方法在实现电池老化行为分析和寿命预测中的前景,当前机器学习在EIS研究中存在的局限性,以及对未来基于EIS实现电池寿命预测进行了展望。

关键词: 锂离子电池, 电化学阻抗谱, 机器学习, 寿命预测, 数据驱动

Abstract:

The rapid proliferation of electrification has driven a global surge in the demand for power and energy storage batteries. This rise has intensified concerns regarding battery safety and reliability, emphasizing the need for accurate methods for diagnosing and predicting battery aging, making this a notable area of research in the battery domain. Electrochemical impedance spectroscopy (EIS) is widely used to analyze the complex aging processes of batteries because it can effectively decouple various frequency-domain processes. The integration of machine learning methods not only facilitates the acquisition and analysis of EIS data but also offers deeper insights into battery aging and failure mechanisms. This paper reviews the latest applications of machine learning methods in EIS technique, focusing on machine learning-based acquisition and analysis of EIS data for battery life assessment and prediction. In addition, this paper explores the potential of data fusion methods for analyzing the aging behavior of batteries and predicting their lifespan, discusses the current limitations of applying machine learning to EIS research, and describes the future prospects of EIS-based battery life prediction.

Key words: lithium-ion batteries, electrochemical impedance spectroscopy, machine learning, lifetime prediction, data-driven

中图分类号: