[1] |
王海华. 储能技术在促进新能源消纳与电力系统灵活性提升中的作用[J]. 光源与照明, 2024(9): 234-236.
|
|
WANG H H. The role of energy storage technology in promoting the consumption of new energy and improving the flexibility of power system[J]. Lamps & Lighting, 2024(9): 234-236.
|
[2] |
郭静. "双碳"背景下电化学储能技术的应用分析及展望[J]. 电气时代, 2024(8): 21-24.
|
|
GUO J. Application analysis and prospect of electrochemical energy storage technology under the background of "double carbon"[J]. Electric Age, 2024(8): 21-24.
|
[3] |
容晓晖, 陆雅翔, 戚兴国, 等. 钠离子电池: 从基础研究到工程化探索[J]. 储能科学与技术, 2020, 9(2): 515-522. DOI: 10.19799/j.cnki. 2095-4239.2020.0054.
|
|
RONG X H, LU Y X, QI X G, et al. Na-ion batteries: From fundamental research to engineering exploration[J]. Energy Storage Science and Technology, 2020, 9(2): 515-522. DOI: 10. 19799/j.cnki.2095-4239.2020.0054.
|
[4] |
张平, 康利斌, 王明菊, 等. 钠离子电池储能技术及经济性分析[J]. 储能科学与技术, 2022, 11(6): 1892-1901. DOI: 10.19799/j.cnki.2095-4239.2022.0066.
|
|
ZHANG P, KANG L B, WANG M J, et al. Technology feasibility and economic analysis of Na-ion battery energy storage[J]. Energy Storage Science and Technology, 2022, 11(6): 1892-1901. DOI: 10.19799/j.cnki.2095-4239.2022.0066.
|
[5] |
方铮, 曹余良, 胡勇胜, 等. 室温钠离子电池技术经济性分析[J]. 储能科学与技术, 2016, 5(2): 149-158. DOI: 10.3969/j.issn.2095-4239. 2016.02.005.
|
|
FANG Z, CAO Y L, HU Y S, et al. Economic analysis for room-temperature sodium-ion battery technologies[J]. Energy Storage Science and Technology, 2016, 5(2): 149-158. DOI: 10.3969/j.issn.2095-4239.2016.02.005.
|
[6] |
张明杰, 杨凯, 刘振, 等. 钠离子电池热安全性研究进展[J]. 电池, 2025, 55(2): 368-375. DOI: 10.19535/j.1001-1579.2025.02.028.
|
|
ZHANG M J, YANG K, LIU Z, et al. Research progress in thermal safety for sodium-ion battery[J]. Battery Bimonthly, 2025, 55(2): 368-375. DOI: 10.19535/j.1001-1579.2025.02.028.
|
[7] |
PESARAN A A. Battery thermal management in EV and HEVs: Issues and solutions[J]. Battery Man, 2001, 43(5): 34-49.
|
[8] |
徐晓明, 赵又群. 基于双进双出流径液冷系统散热的电池模块热特性分析[J]. 中国机械工程, 2013, 24(3): 313-316, 321. DOI: 10.3969/j.issn.1004-132X.2013.03.006.
|
|
XU X M, ZHAO Y Q. Research on battery module thermal characteristics based on double inlet and outlet flow path liquid-cooled system[J]. China Mechanical Engineering, 2013, 24(3): 313-316, 321. DOI: 10.3969/j.issn.1004-132X.2013.03.006.
|
[9] |
JANG J C, RHI S H. Battery thermal management system of future electric vehicles with loop thermosyphon[C]// US-Korea conference on science, technology, and entrepreneurship (UKC). 2010.
|
[10] |
AL HALLAJ S, SELMAN J R. A novel thermal management system for electric vehicle batteries using phase-change material[J]. Journal of the Electrochemical Society, 2000, 147(9): 3231. DOI: 10.1149/1.1393888.
|
[11] |
MAHAMUD R, PARK C. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity[J]. Journal of Power Sources, 2011, 196(13): 5685-5696. DOI: 10. 1016/j.jpowsour.2011.02.076.
|
[12] |
KARIMI G, LI X. Thermal management of lithium-ion batteries for electric vehicles[J]. International Journal of Energy Research, 2013, 37(1): 13-24. DOI: 10.1002/er.1956.
|
[13] |
JIN L W, LEE P S, KONG X X, et al. Ultra-thin minichannel LCP for EV battery thermal management[J]. Applied Energy, 2014, 113: 1786-1794. DOI: 10.1016/j.apenergy.2013.07.013.
|
[14] |
FAN Y W, WANG Z H, FU T, et al. Numerical investigation on lithium-ion battery thermal management utilizing a novel tree-like channel liquid cooling plate exchanger[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122143. DOI: 10.1016/j.ijheatmasstransfer.2021.122143.
|
[15] |
吴转转, 田丽亭, 刘健圳. 圆柱形锂电池液冷热管理实验研究[J]. 低温与超导, 2022, 50(2): 42-48. DOI: 10.16711/j.1001-7100.2022. 02.008.
|
|
WU Z Z, TIAN L T, LIU J Z. Experimental research on thermal management of cylindrical lithium battery by liquid cooling[J]. Cryogenics & Superconductivity, 2022, 50(2): 42-48. DOI: 10.16711/j.1001-7100.2022.02.008.
|
[16] |
杨元龙, 张高凡, 刘强, 等. 基于热-流耦合模型的动力电池液冷系统冷却性能研究[J]. 电源技术, 2023, 47(11): 1433-1437.
|
|
YANG Y L, ZHANG G F, LIU Q, et al. Cooling performance study of power battery liquid cooling system based on thermal-fluid coupling model[J]. Chinese Journal of Power Sources, 2023, 47(11): 1433-1437.
|
[17] |
曹彦国, 郭胜, 陈娟. 利用热管技术和地源热泵技术防治隧道冻害的研究[J]. 铁道标准设计, 2014, 58(10): 97-101. DOI: 10.13238/j.issn.1004-2954.2014.10.023.
|
|
CAO Y G, GUO S, CHEN J. The research on preventing tunnel freezing damages using heat pipe and ground source heat pump system[J]. Railway Standard Design, 2014, 58(10): 97-101. DOI: 10.13238/j.issn.1004-2954.2014.10.023.
|
[18] |
李亚宏, 刘玉兰, 费华, 等. 固-液无机定形复合相变材料热性能研究进展[J]. 化工新型材料, 2022, 50(7): 47-53. DOI: 10.19817/j.cnki.issn1006-3536.2022.07.010.
|
|
LI Y H, LIU Y L, FEI H, et al. Research progress on thermal property of solid-liquid inorganic FCPCM[J]. New Chemical Materials, 2022, 50(7): 47-53. DOI: 10.19817/j.cnki.issn1006-3536. =2022.07.010.
|
[19] |
WANG Z C, ZHANG Z Q, JIA L, et al. Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery[J]. Applied Thermal Engineering, 2015, 78: 428-436. DOI: 10.1016/j.applthermaleng.2015.01.009.
|
[20] |
杜飞, 田镇熊, 刘宏磊, 等. 采用有限体积法的自然对流换热拓扑优化数值方法[J]. 西安交通大学学报, 2024, 58(8): 103-113.
|
|
DU F, TIAN Z X, LIU H L, et al. A numerical method for topology optimization of natural convection heat transfer based on finite volume method[J]. Journal of Xi'an Jiaotong University, 2024, 58(8): 103-113.
|
[21] |
张玮, 王元, 徐忠. 多重网格技术在SIMPLE内外迭代中的应用[J]. 西安交通大学学报, 2001, 35(7): 670-674. DOI: 10.3321/j.issn:0253-987X.2001.07.003.
|
|
ZHANG W, WANG Y, XU Z. Application of multigrid method to inner and outer iteration in semi-implicit method for pressure-linked equation algorithm[J]. Journal of Xi'an Jiaotong University, 2001, 35(7): 670-674. DOI: 10.3321/j.issn:0253-987X.2001.07.003.
|