储能科学与技术 ›› 2025, Vol. 14 ›› Issue (10): 3764-3773.doi: 10.19799/j.cnki.2095-4239.2025.0331

• 储能系统与工程 • 上一篇    下一篇

钠离子电池储能系统产热特性与热管理策略优化

彭宇翔1(), 高立克1, 李勇琦2,3, 唐彬1(), 罗传胜1   

  1. 1.广西电网有限责任公司,广西 南宁 530023
    2.南方电网调峰调频发电有限公司储能科研院,广东 广州 510663
    3.中国科学技术大学,安徽 合肥 230026
  • 收稿日期:2025-04-03 修回日期:2025-05-09 出版日期:2025-10-28 发布日期:2025-10-20
  • 通讯作者: 唐彬 E-mail:catkingtb@aliyun.com;17737738@qq.com
  • 作者简介:彭宇翔(1974—),男,硕士,高级工程师,研究方向为新型电力系统技术,E-mail:catkingtb@aliyun.com
  • 基金资助:
    国家重点研发计划(2022YFB2402500)

Heat-generation characteristics and thermal-management optimization of sodium-ion-battery energy storage systems

Yuxiang PENG1(), Like GAO1, Yongqi LI2,3, Bin TANG1(), Chuansheng LUO1   

  1. 1.Guangxi Power Grid Co. , Ltd. , Nanning 530023, Guangxi, China
    2.Energy Storage Research Institute, China Southern Power Grid Power Generation Co. , Ltd, Guangzhou 510663, Guangdong, China
    3.University of Science and Technology of China, Hefei 230026, Anhui, China
  • Received:2025-04-03 Revised:2025-05-09 Online:2025-10-28 Published:2025-10-20
  • Contact: Bin TANG E-mail:catkingtb@aliyun.com;17737738@qq.com

摘要:

随着可再生能源的快速发展,储能系统在平衡能源供需、提高能源利用效率方面扮演着越来越重要的角色。钠离子电池储能系统因其独特的优势,被视为未来大规模储能的有力候选技术之一,钠离子电池充放电过程中产生的热量会对电池的性能、寿命及安全产生重大影响。因此,非常有必要开发出更高效的热管理策略以提高钠离子电池储能系统的安全性。本工作主要采用实验和数值仿真相结合的方法,研究了钠离子电池在充放电过程中的非对称产热特性,进而提出了在放电过程中采用多阶段变流量的热管理优化策略。通过实验发现,钠离子电池放电过程产热量是充电过程产热量的3倍,1P放电工况下,峰值产热功率达70 W。而1P充电工况下,峰值产热功率仅为25 W,且持续时间极短。本工作提出了充放电过程采用不同流量的非对称式液冷热管理系统,并且基于放电过程产热功率呈现阶段式变化的特征,放电过程提出的多阶段变流量的优化策略实现了降低同等电池温度的情况下,有效降低热管理系统功耗的目的。本研究对优化钠离子电池热管理系统功耗、提高钠离子电池储能系统安全性具有重要意义。

关键词: 钠离子电池, 储能系统, 产热特性, 热管理策略

Abstract:

With the rapid development of renewable energy, energy storage systems (ESSs) play increasingly vital roles in balancing energy supply and demand, as well as enhancing energy-utilization efficiency. Sodium-ion battery (SIB) ESSs, due to their unique advantages, are rated among the most promising candidates for large-scale energy storage. However, the heat generated by SIBs during charging and discharging can significantly impact their performance, lifespan, and safety. Therefore, more efficient thermal-management strategies must be developed to improve SIB ESS safety. In this study, experiments and numerical simulations are combined to explore the asymmetric heat-generation characteristics of SIBs during charging and discharging, as well as propose a multistage variable flow-rate thermal-management-optimization strategy during discharging. The experimental results reveal that the heat-generation during the discharging process of SIBs is three times that of their charging process, with a peak heat-generation power of 70 W under 1P discharge conditions. Conversely, under the 1P charging conditions, the peak heat-generation power is only 25 W and lasts for a very short period. Further, an asymmetric liquid-cooling thermal-management system is introduced for SIB charging and discharging processes, and a multistage variable flow-rate optimization strategy is proposed based on the characteristic of stage-wise changes in the heat-generation power during discharging. This strategy effectively reduces the power consumption of the thermal-management system while maintaining the same battery temperature. The insights obtained from this study can be used to optimize the power consumption of SIB thermal-management systems as well as enhance the safety of SIB ESS.

Key words: sodium-ion batteries, energy storage system, heat-generation characteristics, thermal management

中图分类号: