1 |
DUAN W Q, KHURSHID A, NAZIR N, et al. From gray to green: Energy crises and the role of CPEC[J]. Renewable Energy, 2022, 190: 188-207. DOI: 10.1016/j.renene.2022.03.066.
|
2 |
YANG Q C, ZHENG M B, CHANG C P. Energy policy and green innovation: A quantile investigation into renewable energy[J]. Renewable Energy, 2022, 189: 1166-1175. DOI: 10.1016/j.renene. 2022.03.046.
|
3 |
MOULAKHNIF K, AIT OUSALEH H, SAIR S, et al. Renewable approaches to building heat: Exploring cutting-edge innovations in thermochemical energy storage for building heating[J]. Energy and Buildings, 2024, 318: 114421. DOI: 10.1016/j.enbuild. 2024.114421.
|
4 |
CHATE A, SRINIVASA MURTHY S, DUTTA P. Analysis of a coupled calcium oxide-potassium carbonate salt hydrate based thermochemical energy storage system[J]. Energy, 2024, 313: 134067. DOI: 10.1016/j.energy.2024.134067.
|
5 |
SANTAMARÍA PADILLA A, ROMERO-PAREDES RUBIO H. A thermochemical energy storage materials review based on solid-gas reactions for supercritical CO2 solar tower power plant with a Brayton cycle[J]. Journal of Energy Storage, 2023, 73: 108906. DOI: 10.1016/j.est.2023.108906.
|
6 |
IRAM R, ANSER M K, AWAN R U, et al. Prioritization of renewable solar energy to prevent energy insecurity: An integrated role[J]. The Singapore Economic Review, 2021, 66(2): 391-412. DOI: 10.1142/s021759082043002x.
|
7 |
LAZZARIN R. Heat pumps and solar energy: A review with some insights in the future[J]. International Journal of Refrigeration, 2020, 116: 146-160. DOI: 10.1016/j.ijrefrig.2020.03.031.
|
8 |
CABEZA L. Advances in thermal energy storage systems: Methods and applications[M]. Amsterdam: Woodhead Publishing, 2021: 37-54.
|
9 |
TIAN X K, GUO S J, LV X J, et al. Progress in multiscale research on calcium-looping for thermochemical energy storage: From materials to systems[J]. Progress in Energy and Combustion Science, 2025, 106: 101194. DOI: 10.1016/j.pecs. 2024.101194.
|
10 |
ZHANG W Y, JI Y, FAN Y B, et al. Three-dimensional numerical study on finned reactor configurations for ammonia thermochemical sorption energy storage[J]. Chemical Engineering Science, 2024, 300: 120599. DOI: 10.1016/j.ces.2024.120599.
|
11 |
YADAV D, BANERJEE R. A review of solar thermochemical processes[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 497-532. DOI: 10.1016/j.rser.2015.10.026.
|
12 |
PARDO P, DEYDIER A, ANXIONNAZ-MINVIELLE Z, et al. A review on high temperature thermochemical heat energy storage[J]. Renewable and Sustainable Energy Reviews, 2014, 32: 591-610. DOI: 10.1016/j.rser.2013.12.014.
|
13 |
ANDRÉ L, ABANADES S, FLAMANT G. Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2016, 64: 703-715. DOI: 10.1016/j.rser.2016.06.043.
|
14 |
STRÖHLE S, HASELBACHER A, JOVANOVIC Z R, et al. The effect of the gas-solid contacting pattern in a high-temperature thermochemical energy storage on the performance of a concentrated solar power plant[J]. Energy & Environmental Science, 2016, 9(4): 1375-1389. DOI: 10.1039/C5EE03204K.
|
15 |
QIU Y N, YANG Y, YANG N, et al. Thermochemical energy storage using silica gel: Thermal storage performance and nonisothermal kinetic analysis[J]. Solar Energy Materials and Solar Cells, 2023, 251: 112153. DOI: 10.1016/j.solmat. 2022. 112153.
|
16 |
XU Q H, WANG L, LI Z S, et al. A calcium looping system powered by renewable electricity for long-term thermochemical energy storage, residential heat supply and carbon capture[J]. Energy Conversion and Management, 2023, 276: 116592. DOI: 10.1016/j.enconman.2022.116592.
|
17 |
PALACIOS A, BARRENECHE C, NAVARRO M E, et al. Thermal energy storage technologies for concentrated solar power-A review from a materials perspective[J]. Renewable Energy, 2020, 156: 1244-1265. DOI: 10.1016/j.renene.2019.10.127.
|
18 |
LI X, JIANG H C, SU Z X, et al. Integrated attrition model of mechanical-thermal-reaction for CaCO3/CaO thermochemical energy storage[J]. Applied Thermal Engineering, 2024, 257: 124247. DOI: 10.1016/j.applthermaleng.2024.124247.
|
19 |
WEI L Y, PAN Z F, SUN S C, et al. Solar-driven collaborative thermochemical energy storage and fuel production via integrating calcium looping and redox cycle[J]. Chemical Engineering Journal, 2024, 500: 157364. DOI: 10.1016/j.cej.2024.157364.
|
20 |
ZHAO J, KORBA D, MISHRA A, et al. Particle-based high-temperature thermochemical energy storage reactors[J]. Progress in Energy and Combustion Science, 2024, 102: 101143. DOI: 10.1016/j.pecs.2024.101143.
|
21 |
XU T X, TIAN X K, KHOSA A A, et al. Reaction performance of CaCO3/CaO thermochemical energy storage with TiO2 dopant and experimental study in a fixed-bed reactor[J]. Energy, 2021, 236: 121451. DOI: 10.1016/j.energy.2021.121451.
|
22 |
JOHN M K, VISHNU K, VISHNU C, et al. Experimental and numerical investigations on an open thermochemical energy storage system using low-temperature hydrate salt[J]. Thermal Science and Engineering Progress, 2024, 53: 102749. DOI: 10.1016/j.tsep.2024.102749.
|
23 |
MATHEW A, NADIM N, CHANDRATILLEKE T T, et al. Kinetic investigation and numerical modelling of CaCO3/Al2O3 reactor for high-temperature thermal energy storage application[J]. Solar Energy, 2022, 241: 262-274. DOI: 10.1016/j.solener.2022.06.005.
|
24 |
DENG Y J, ZHU Z Y, LIU Z M, et al. Study on coupling characteristics of thermal-fluid-chemical multi-physics field in CaCO3/CaO thermochemical exothermic reactor[J]. Chemical Engineering Science, 2024, 299: 120453. DOI: 10.1016/j.ces. 2024.120453.
|
25 |
HAN X C, XU H J, ZHAO C Y. Design and performance evaluation of multi-layered reactor for calcium-based thermochemical heat storage with multi-physics coupling[J]. Renewable Energy, 2022, 195: 1324-1340. DOI: 10.1016/j.renene.2022.06.120.
|
26 |
HAN X C, XU H J, LI Y Y. Experimental investigation on thermochemical reaction with gradient-porosity reactor for medium temperature heat storage applications[J]. Journal of Energy Storage, 2024, 78: 110021. DOI: 10.1016/j.est. 2023. 110021.
|
27 |
YAN J, JIANG L, ZHAO C Y. Numerical simulation of the Ca(OH)2/CaO thermochemical heat storage process in an internal heating fixed-bed reactor[J]. Sustainability, 2023, 15(9): 7141. DOI: 10.3390/su15097141.
|
28 |
WANG W, SHUAI Y, YANG J Y, et al. Heat transfer and heat storage characteristics of calcium hydroxide/oxide based on shell-tube thermochemical energy storage device[J]. Renewable Energy, 2023, 218: 119364. DOI: 10.1016/j.renene.2023.119364.
|
29 |
CHEN J T, XIA B Q, ZHAO C Y. Topology optimization for heat transfer enhancement in thermochemical heat storage[J]. International Journal of Heat and Mass Transfer, 2020, 154: 119785. DOI: 10.1016/j.ijheatmasstransfer.2020.119785.
|
30 |
HUMBERT G, SCIACOVELLI A. Design of effective heat transfer structures for performance maximization of a closed thermochemical energy storage reactor through topology optimization[J]. Applied Thermal Engineering, 2024, 239: 122146. DOI: 10.1016/j.applthermaleng.2023.122146.
|
31 |
ZHU L J, CAI T F, CHEN X Y, et al. Gas-solid flow behavior and heat transfer in a spiral-based reactor for calcium-based thermochemical energy storage[J]. Journal of Energy Storage, 2024, 99: 113481. DOI: 10.1016/j.est.2024.113481.
|
32 |
SHI T, XU H J, QI C, et al. Multi-physics modeling of thermochemical heat storage with enhance heat transfer[J]. Applied Thermal Engineering, 2021, 198: 117508. DOI: 10.1016/j.applthermaleng.2021.117508.
|
33 |
YONG Z, MATA V, RODRIGUES A E. Adsorption of carbon dioxide at high temperature—A review[J]. Separation and Purification Technology, 2002, 26(2/3): 195-205. DOI: 10.1016/S1383-5866(01)00165-4.
|
34 |
SCHAUBE F, UTZ I, WÖRNER A, et al. De- and rehydration of Ca(OH)2 in a reactor with direct heat transfer for thermo-chemical heat storage. Part B: Validation of model[J]. Chemical Engineering Research and Design, 2013, 91(5): 865-873. DOI: 10.1016/j.cherd.2013.02.019.
|
35 |
LIU X L, CHENG B, ZHU Q B, et al. Highly efficient solar-driven CO2 reforming of methane via concave foam reactors[J]. Energy, 2022, 261: 125141. DOI: 10.1016/j.energy.2022.125141.
|
36 |
顾清之, 赵长颖. 镁-氢化镁热化学蓄热系统数值分析[J]. 化工学报, 2012, 63(12): 3776-3783. DOI: 10.3969/j.issn.0438-1157. 2012. 12.006.
|
|
GU Q Z, ZHAO C Y. Numerical study on Mg/MgH2 thermochemical heat storage system[J]. CIESC Journal, 2012, 63(12): 3776-3783. DOI: 10.3969/j.issn.0438-1157.2012.12.006.
|
37 |
DU PLESSIS P, MONTILLET A, COMITI J, et al. Pressure drop prediction for flow through high porosity metallic foams[J]. Chemical Engineering Science, 1994, 49(21): 3545-3553. DOI: 10.1016/0009-2509(94)00170-7.
|