储能科学与技术 ›› 2025, Vol. 14 ›› Issue (5): 1784-1796.doi: 10.19799/j.cnki.2095-4239.2025.0262
莫子鸣1(), 饶宗昕1, 杨建飞1, 杨孟昊2, 蔡黎明1(
)
收稿日期:
2025-03-27
修回日期:
2025-04-19
出版日期:
2025-05-28
发布日期:
2025-05-21
通讯作者:
蔡黎明
E-mail:2231636@tongji.edu.cn;lcai@tongji.edu.cn
作者简介:
莫子鸣(2000—),男,硕士研究生,研究方向为电池热失控模型,E-mail:2231636@tongji.edu.cn;
Ziming MO1(), Zongxin RAO1, Jianfei YANG1, Menghao YANG2, Liming CAI1(
)
Received:
2025-03-27
Revised:
2025-04-19
Online:
2025-05-28
Published:
2025-05-21
Contact:
Liming CAI
E-mail:2231636@tongji.edu.cn;lcai@tongji.edu.cn
摘要:
因过充引发的热失控严重威胁了锂离子电池的使用安全,通过热失控模型分析关键参数对过充热失控过程产热产气行为的影响规律,已成为提升电池使用安全性的重要手段。本工作通过引入副反应产气模型和内压计算模型,构建了电池过充热失控气热模型,实现了过充状态下电池产热产气行为的综合表征。通过仿真研究了电池过充热失控过程的产热与产气特性,获取了关键参数并进一步分析了其对电池过充热失控行为的影响规律。结果表明,充电倍率和电解液分解电位是影响电池过充热失控行为的关键参数,降低充电倍率和提高电解液分解电位可有效抑制泄压阀开启与热失控触发;充电倍率主要影响电池过充初期的温度变化,电解液分解电位则主要影响电池过充后期电解液分解反应的触发时刻;随着充电倍率的提升,提高电解液分解电位对热失控触发的抑制效果显著减弱,对热失控荷电状态(SOC)的抑制程度减少了22%,但对泄压阀开启的抑制效果并不明显,对泄压阀开启SOC的抑制程度仅减少3%。本工作为锂离子电池材料热安全设计提供了支持。
中图分类号:
莫子鸣, 饶宗昕, 杨建飞, 杨孟昊, 蔡黎明. 锂离子电池过充热失控气热模型构建及关键参数影响分析[J]. 储能科学与技术, 2025, 14(5): 1784-1796.
Ziming MO, Zongxin RAO, Jianfei YANG, Menghao YANG, Liming CAI. Construction and characteristic analysis of key parameters in a gas-thermal model for thermal runaway in lithium-ion battery based on overcharge[J]. Energy Storage Science and Technology, 2025, 14(5): 1784-1796.
1 | ADAIKKAPPAN M, SATHIYAMOORTHY N. Modeling, state of charge estimation, and charging of lithium-ion battery in electric vehicle: A review[J]. International Journal of Energy Research, 2022, 46(3): 2141-2165. DOI: 10.1002/er.7339. |
2 | DING Y L, CANO Z P, YU A P, et al. Automotive Li-ion batteries: Current status and future perspectives[J]. Electrochemical Energy Reviews, 2019, 2(1): 1-28. DOI: 10.1007/s41918-018-0022-z. |
3 | FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. DOI: 10. 1016/j.joule.2020.02.010. |
4 | 李磊, 李钊, 姬丹, 等. 过充电触发的LFP和NCM锂离子电池的热失控行为: 差异与原因[J]. 储能科学与技术, 2022, 11(5): 1419-1427. DOI: 10.19799/j.cnki.2095-4239.2021.0548. |
LI L, LI Z, JI D, et al. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: The differences and reasons[J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. DOI: 10.19799/j.cnki.2095-4239.2021.0548. | |
5 | 朱鸿章, 吴传平, 周天念, 等. 磷酸铁锂和三元锂电池外部过热条件下的热失控特性[J]. 储能科学与技术, 2022, 11(1): 201-210. DOI: 10.19799/j.cnki.2095-4239.2021.0369. |
ZHU H Z, WU C P, ZHOU T N, et al. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating[J]. Energy Storage Science and Technology, 2022, 11(1): 201-210. DOI: 10.19799/j.cnki.2095-4239. 2021. 0369. | |
6 | 汤元会, 袁博兴, 李杰, 等. 圆柱形锂离子电池在针刺条件下的安全性研究[J]. 储能科学与技术, 2024, 13(4): 1326-1334. DOI: 10. 19799/j.cnki.2095-4239.2023.0654. |
TANG Y H, YUAN B X, LI J, et al. Study on the safety of cylindrical lithium-ion batteries under nail penetration conditions[J]. Energy Storage Science and Technology, 2024, 13(4): 1326-1334. DOI: 10.19799/j.cnki.2095-4239.2023.0654. | |
7 | ZHU X Q, WANG Z P, WANG Y T, et al. Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: Thermal runaway features and safety management method[J]. Energy, 2019, 169: 868-880. DOI: 10.1016/j.energy.2018.12.041. |
8 | CHEN Y H. Recent advances of overcharge investigation of lithium-ion batteries[J]. Ionics, 2022, 28(2): 495-514. DOI: 10. 1007/s11581-021-04331-3. |
9 | KIM G H, PESARAN A, SPOTNITZ R. A three-dimensional thermal abuse model for lithium-ion cells[J]. Journal of Power Sources, 2007, 170(2): 476-489. DOI: 10.1016/j.jpowsour. 2007. 04.018. |
10 | LU C H, LIN S W. Dissolution kinetics of spinel lithium manganate and its relation to capacity fading in lithium ion batteries[J]. Journal of Materials Research, 2002, 17(6): 1476-1481. DOI: 10.1557/JMR.2002.0219. |
11 | REN D S, FENG X N, LU L G, et al. An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery[J]. Journal of Power Sources, 2017, 364: 328-340. DOI: 10.1016/j.jpowsour.2017.08.035. |
12 | VERBRUGGE M W, XIAO X C, BAKER D R. Experimental and theoretical examination of low-current overcharge at lithiated-graphite porous electrodes[J]. Journal of the Electrochemical Society, 2020, 167(8): 080523. DOI: 10.1149/1945-7111/ab8ce7. |
13 | QI C, ZHU Y L, GAO F, et al. Mathematical model for thermal behavior of lithium ion battery pack under overcharge[J]. International Journal of Heat and Mass Transfer, 2018, 124: 552-563. DOI: 10.1016/j.ijheatmasstransfer.2018.03.100. |
14 | YANG M J, RONG M Z, YE Y J, et al. Comprehensive analysis of gas production for commercial LiFePO4 batteries during overcharge-thermal runaway[J]. Journal of Energy Storage, 2023, 72: 108323. DOI: 10.1016/j.est.2023.108323. |
15 | GUO Q Z, LIU S Y, ZHANG J B, et al. Effects of charging rates on heat and gas generation in lithium-ion battery thermal runaway triggered by high temperature coupled with overcharge[J]. Journal of Power Sources, 2024, 600: 234237. DOI: 10.1016/j.jpowsour.2024.234237. |
16 | CHEN J Y, XU C S, WANG Q Z, et al. The thermal-gas coupling mechanism of lithium iron phosphate batteries during thermal runaway[J]. Journal of Power Sources, 2025, 625: 235728. DOI: 10.1016/j.jpowsour.2024.235728. |
17 | WANG K, WU D J, CHANG C Y, et al. Charging rate effect on overcharge-induced thermal runaway characteristics and gas venting behaviors for commercial lithium iron phosphate batteries[J]. Journal of Cleaner Production, 2024, 434: 139992. DOI: 10. 1016/j.jclepro.2023.139992. |
18 | NIE B S, DONG Y S, CHANG L. The evolution of thermal runaway parameters of lithium-ion batteries under different abuse conditions: A review[J]. Journal of Energy Storage, 2024, 96: 112624. DOI: 10.1016/j.est.2024.112624. |
19 | HATCHARD T D, MACNEIL D D, BASU A, et al. Thermal model of cylindrical and prismatic lithium-ion cells[J]. Journal of the Electrochemical Society, 2001, 148(7): A755. DOI: 10.1149/1. 1377592. |
20 | ZENG G H, BAI Z H, HUANG P F, et al. Thermal safety study of Li-ion batteries under limited overcharge abuse based on coupled electrochemical-thermal model[J]. International Journal of Energy Research, 2020, 44(5): 3607-3625. DOI: 10.1002/er. 5125. |
21 | DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526-1533. DOI: 10.1149/1.2221597. |
22 | LEE C H, BAE S J, JANG M. A study on effect of lithium ion battery design variables upon features of thermal-runaway using mathematical model and simulation[J]. Journal of Power Sources, 2015, 293: 498-510. DOI: 10.1016/j.jpowsour. 2015. 05.095. |
23 | NEWMAN J. Optimization of porosity and thickness of a battery electrode by means of a reaction-zone model[J]. Journal of the Electrochemical Society, 1995, 142(1): 97-101. DOI: 10.1149/1. 2043956. |
24 | ÖZDEMIR T, EKICI Ö, KÖKSAL M. Numerical and experimental investigation of the electrical and thermal behaviors of the Li-ion batteries under normal and abuse operating conditions[J]. Journal of Energy Storage, 2024, 77: 109880. DOI: 10.1016/j.est. 2023.109880. |
25 | HAMISI C M, CHOMBO P V, LAOONUAL Y, et al. An electrothermal model to predict thermal characteristics of lithium-ion battery under overcharge condition[J]. Energies, 2022, 15(6): 2284. DOI: 10.3390/en15062284. |
26 | XU P P, LI J Q, CHAI Z X, et al. Experimental and modeling approaches to investigate overcharge-induced thermal runaway behavior for LiFePO4 battery[J]. Journal of Energy Storage, 2024, 92: 111687. DOI: 10.1016/j.est.2024.111687. |
27 | LI K, LI Y F, SHEN W J, et al. Mitigation strategy for Li-ion battery module thermal runaway propagation triggered by overcharging[J]. International Journal of Thermal Sciences, 2024, 198: 108880. DOI: 10.1016/j.ijthermalsci.2024.108880. |
28 | SPOTNITZ R, FRANKLIN J. Abuse behavior of high-power, lithium-ion cells[J]. Journal of Power Sources, 2003, 113(1): 81-100. DOI: 10.1016/S0378-7753(02)00488-3. |
29 | FENG X N, HE X M, OUYANG M G, et al. Thermal runaway propagation model for designing a safer battery pack with 25Ah LiNix Coy Mnz O2 large format lithium ion battery[J]. Applied Energy, 2015, 154: 74-91. DOI: 10.1016/j.apenergy.2015.04.118. |
30 | LOPEZ C F, JEEVARAJAN J A, MUKHERJEE P P. Characterization of lithium-ion battery thermal abuse behavior using experimental and computational analysis[J]. Journal of the Electrochemical Society, 2015, 162(10): A2163-A2173. DOI: 10.1149/2.0751510jes. |
31 | WANG H Y, TANG A D, HUANG K L. Oxygen evolution in overcharged LiNi1/3Co1/3Mn1/3O2 electrode and its thermal analysis kinetics[J]. Chinese Journal of Chemistry, 2011, 29(8): 1583-1588. DOI: 10.1002/cjoc.201180284. |
32 | REN D S, LIU X, FENG X N, et al. Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components[J]. Applied Energy, 2018, 228: 633-644. DOI: 10. 1016/j.apenergy.2018.06.126. |
33 | ZHANG P F, LU J J, YANG K B, et al. A 3D simulation model of thermal runaway in Li-ion batteries coupled particles ejection and jet flow[J]. Journal of Power Sources, 2023, 580: 233357. DOI: 10.1016/j.jpowsour.2023.233357. |
34 | E J Q, XIAO H X, TIAN S C, et al. A comprehensive review on thermal runaway model of a lithium-ion battery: Mechanism, thermal, mechanical, propagation, gas venting and combustion[J]. Renewable Energy, 2024, 229: 120762. DOI: 10.1016/j.renene.2024.120762. |
35 | PENG R Q, KONG D P, PING P, et al. Thermal runaway modeling of lithium-ion batteries at different scales: Recent advances and perspectives[J]. Energy Storage Materials, 2024, 69: 103417. DOI: 10.1016/j.ensm.2024.103417. |
36 | ZHAO R C, LAI Z D, LI W H, et al. Development of a coupled model of heat generation and jet flow of lithium-ion batteries during thermal runaway[J]. Journal of Energy Storage, 2023, 63: 107048. DOI: 10.1016/j.est.2023.107048. |
37 | ZHU Y L, WANG C J, GAO F, et al. Rupture and combustion characteristics of lithium-ion battery under overcharge[J]. Journal of Energy Storage, 2021, 38: 102571. DOI: 10.1016/j.est. 2021. 102571. |
38 | PASQUIER A D, DISMA F, BOWMER T, et al. Differential scanning calorimetry study of the reactivity of carbon anodes in plastic Li-ion batteries[J]. Journal of the Electrochemical Society, 1998, 145(2): 472-477. DOI: 10.1149/1.1838287. |
39 | KIM J, MALLARAPU A, FINEGAN D P, et al. Modeling cell venting and gas-phase reactions in 18650 lithium ion batteries during thermal runaway[J]. Journal of Power Sources, 2021, 489: 229496. DOI: 10.1016/j.jpowsour.2021.229496. |
40 | OSTANEK J K, PARHIZI M, LI W S, et al. CFD-based thermal abuse simulations including gas generation and venting of an 18650 Li-ion battery cell[J]. Journal of the Electrochemical Society, 2023, 170(9): 090512. DOI: 10.1149/1945-7111/acf4c1. |
[1] | 周海洋, 张振东, 盛雷, 朱泽华, 张晓军, 张春风. 储能用锂电池浸没式热性能调控仿真及热安全实验研究[J]. 储能科学与技术, 2025, 14(5): 1866-1874. |
[2] | 宋海飞, 王乐红, 原义栋, 赵天挺, 陈捷. 基于改进卡尔曼算法的电池采样电压滤波估计[J]. 储能科学与技术, 2025, 14(5): 2106-2113. |
[3] | 曾州岚, 尚雷, 胡志金, 王宗凡, 辛小超, 刘瑛. 高容量锂离子电池正极补锂材料Li5FeO4@C的性能研究[J]. 储能科学与技术, 2025, 14(5): 1875-1883. |
[4] | 彭磊, 倪照鹏, 于越, 孙福鹏, 夏修龙, 张鹏, 孙思博. 过充导致三元锂电池电动汽车火灾的试验研究[J]. 储能科学与技术, 2025, 14(4): 1484-1495. |
[5] | 申江卫, 折亦鑫, 舒星, 刘永刚, 魏福星, 夏雪磊, 陈峥. 基于短时随机充电数据和优化卷积神经网络的锂电池健康状态估计[J]. 储能科学与技术, 2025, 14(4): 1585-1595. |
[6] | 刘瑞昊, 马小乐, 张宇萱, 朱曰莹, 刘仕强, 白广利. 基于绝热量热仪的锂离子电池热物性参数测试影响因素研究[J]. 储能科学与技术, 2025, 14(4): 1596-1602. |
[7] | 董作林, 宋金岩, 孟子迪. 基于模态分解和深度学习的锂离子电池寿命预测[J]. 储能科学与技术, 2025, 14(4): 1645-1653. |
[8] | 彭鹏, 王成东, 陈满, 王青松, 雷旗开, 金凯强. 某钛酸锂电池储能电站热失控致灾危害评价[J]. 储能科学与技术, 2025, 14(4): 1617-1630. |
[9] | 徐桂培, 刘浩, 赖洁文, 卢毅锋, 黄辉, 邸会芳, 王振兵. 干法电极技术在超级电容器和锂离子电池中的研究进展[J]. 储能科学与技术, 2025, 14(4): 1445-1460. |
[10] | 岳金明, 刘媛丽, 陈一霞, 禹习谦, 李泓. GC-MS检测锂离子电池电解液分离条件的研究[J]. 储能科学与技术, 2025, 14(4): 1564-1573. |
[11] | 廖兴群, 杨睿, 于立娟, 胡大林, 肖峰, 胡菁, 卢周广. 多功能电解液添加剂2,6-吡啶二甲腈稳定高电压钴酸锂[J]. 储能科学与技术, 2025, 14(4): 1331-1339. |
[12] | 王鹏, 周俊, 伍星, 刘韬. 改进Sine混沌映射CO-ELM锂离子电池RUL预测[J]. 储能科学与技术, 2025, 14(4): 1603-1616. |
[13] | 范文强, 史梓男, 杨代铭, 梁惠施, 陈烨. 不同冷却工质对电池热失控抑制的效果[J]. 储能科学与技术, 2025, 14(4): 1554-1563. |
[14] | 李勇琦, 李志远, 闻有为, 王成东, 段强领, 王青松. 大容量钠离子电池热失控特性实验研究[J]. 储能科学与技术, 2025, 14(4): 1657-1667. |
[15] | 武小兰, 马彭杰, 白志峰, 刘成龙, 郭桂芳, 张锦华. 一种锂离子电池组智能PID双层主动均衡控制方法[J]. 储能科学与技术, 2025, 14(3): 1150-1159. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||