储能科学与技术 ›› 2025, Vol. 14 ›› Issue (5): 1784-1796.doi: 10.19799/j.cnki.2095-4239.2025.0262

• 储能材料与器件 • 上一篇    下一篇

锂离子电池过充热失控气热模型构建及关键参数影响分析

莫子鸣1(), 饶宗昕1, 杨建飞1, 杨孟昊2, 蔡黎明1()   

  1. 1.同济大学汽车学院
    2.同济大学材料科学与工程学院,上海 201804
  • 收稿日期:2025-03-27 修回日期:2025-04-19 出版日期:2025-05-28 发布日期:2025-05-21
  • 通讯作者: 蔡黎明 E-mail:2231636@tongji.edu.cn;lcai@tongji.edu.cn
  • 作者简介:莫子鸣(2000—),男,硕士研究生,研究方向为电池热失控模型,E-mail:2231636@tongji.edu.cn

Construction and characteristic analysis of key parameters in a gas-thermal model for thermal runaway in lithium-ion battery based on overcharge

Ziming MO1(), Zongxin RAO1, Jianfei YANG1, Menghao YANG2, Liming CAI1()   

  1. 1.School of Automotive Studies, Tongji University
    2.School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
  • Received:2025-03-27 Revised:2025-04-19 Online:2025-05-28 Published:2025-05-21
  • Contact: Liming CAI E-mail:2231636@tongji.edu.cn;lcai@tongji.edu.cn

摘要:

因过充引发的热失控严重威胁了锂离子电池的使用安全,通过热失控模型分析关键参数对过充热失控过程产热产气行为的影响规律,已成为提升电池使用安全性的重要手段。本工作通过引入副反应产气模型和内压计算模型,构建了电池过充热失控气热模型,实现了过充状态下电池产热产气行为的综合表征。通过仿真研究了电池过充热失控过程的产热与产气特性,获取了关键参数并进一步分析了其对电池过充热失控行为的影响规律。结果表明,充电倍率和电解液分解电位是影响电池过充热失控行为的关键参数,降低充电倍率和提高电解液分解电位可有效抑制泄压阀开启与热失控触发;充电倍率主要影响电池过充初期的温度变化,电解液分解电位则主要影响电池过充后期电解液分解反应的触发时刻;随着充电倍率的提升,提高电解液分解电位对热失控触发的抑制效果显著减弱,对热失控荷电状态(SOC)的抑制程度减少了22%,但对泄压阀开启的抑制效果并不明显,对泄压阀开启SOC的抑制程度仅减少3%。本工作为锂离子电池材料热安全设计提供了支持。

关键词: 锂离子电池, 过充, 热失控, 气热模型, 参数分析

Abstract:

Overcharging has been identified as a primary contributor to thermal runaway (TR) in lithium-ion batteries (LIBs), where TR modeling plays a pivotal role in understanding coupled heat-gas generation mechanisms for safety enhancement. This study develops an integrated gas-thermal TR model incorporating side reaction-driven gas generation and internal pressure dynamics to characterize overcharge-induced failure. Systematic analysis reveals that charging rate (C-rate) and electrolyte decomposition potential critically govern TR progression, with parametric studies demonstrating that reducing C-rate from 2 C to 1 C combined with elevating electrolyte decomposition potential from 4.3 V to 4.7 V delays TR initiation by 22% in state-of-charge (SOC) while postponing safety valve activation by 15% SOC. The C-rate predominantly regulates temperature evolution during early overcharging (SOC<110%), whereas electrolyte decomposition potential dominates reaction kinetics in later stages (SOC>130%). Notably, increased C-rate substantially weakens the TR-suppressing effect of elevated decomposition potential (22% SOC reduction in suppression efficacy at 3 C vs 1 C), while safety valve activation exhibits stronger dependence on electrolyte stability with merely 3% SOC variation across 1—3 C rates. These findings establish quantitative correlations between material properties and failure thresholds, providing actionable insights for optimizing LIB thermal safety through coordinated charging protocol design and electrolyte stabilization strategies.

Key words: lithium-ion battery, overcharge, thermal runaway, gas-thermal model, characteristic analysis

中图分类号: