储能科学与技术 ›› 2025, Vol. 14 ›› Issue (5): 1875-1883.doi: 10.19799/j.cnki.2095-4239.2024.1092

• 储能材料与器件 • 上一篇    下一篇

高容量锂离子电池正极补锂材料Li5FeO4@C的性能研究

曾州岚(), 尚雷, 胡志金, 王宗凡, 辛小超, 刘瑛()   

  1. 紫金矿业新能源新材料科技(长沙)有限公司,湖南 长沙 410000
  • 收稿日期:2024-11-25 修回日期:2024-12-31 出版日期:2025-05-28 发布日期:2025-05-21
  • 通讯作者: 刘瑛 E-mail:18162583934@163.com;liu_ying@zijinmining.com
  • 作者简介:曾州岚(1997—),男,从事锂电子电池用正极补锂材料研发,E-mail:18162583934@163.com

Li5FeO4@C high capacity prelithium cathode materials for lithium-ion batteries

Zhoulan ZENG(), Lei SHANG, Zhijin HU, Zongfan WANG, Xiaochao XIN, Ying LIU()   

  1. Zijin Mining Renewable Energy and Advanced Materials (Changsha) Co. , Ltd. , Changsha 410000, Hunan, China
  • Received:2024-11-25 Revised:2024-12-31 Online:2025-05-28 Published:2025-05-21
  • Contact: Ying LIU E-mail:18162583934@163.com;liu_ying@zijinmining.com

摘要:

正极补锂添加剂Li5FeO4(LFO)具有理论比容量高、成本低且无毒等优点,是有发展前景的补锂技术之一,但其残碱值高、导电性低等问题导致其在实际使用中脱锂容量大幅降低,限制了其进一步应用。针对此问题,本研究采用高温固相法制备出纯相的LFO材料,并使用等离子增强型化学气相沉积法(PECVD)对LFO材料进行碳包覆处理得到LFO@C材料,分析了不同包覆时间、温度下LFO@C材料的理化性能和电化学性能。扫描电子显微镜(SEM)、透射电子显微镜(TEM)和能量分析谱(EDS)显示不同的PECVD碳包覆工艺会在LFO@C材料表面沉积不同的碳层结构,包覆温度为500 ℃、包覆时间为2 h时会在材料表面沉积一层均匀且致密的碳层。X射线衍射分析(XRD)结果表明包覆温度为500 ℃、包覆时间≤2 h时LFO@C材料不会发生不可逆相变。碳含量和导电性分析结果表明LFO@C材料的碳含量和电导率随包覆时间的延长呈现先增大后减小的趋势、随包覆温度的增加呈上升趋势。残碱值分析结果显示LFO材料的残碱值经过PECVD碳包覆改性后发生了明显的下降,且LFO@C材料的残碱值大小与其表面碳层结构相关。碳包覆改性后的LFO@C材料的电化学性能得到了极大改善,其中容量最高的LFO-5002材料在2.0~4.2 V下首次充电克比容量为756.4 mAh/g,不可逆容量达到623.51 mAh/g,超过纯相LFO材料200 mAh/g以上。分析结果表明使用PECVD可以在LFO材料颗粒表面包裹一层均匀致密的碳层,碳包覆后材料的残碱值大幅降低,导电性、容量大大提升,补锂效果得到了极大改善。研究结果通过碳包覆改性显著提升了正极补锂材料LFO的不可逆容量,为高容量的正极补锂材料设计提供了技术指导。

关键词: 锂离子电池, 正极补锂添加剂, Li5FeO4, 等离子增强型化学气相沉积法, 碳包覆改性

Abstract:

Li5FeO4 (LFO) is a promising prelithium cathode additive owing to its high theoretical specific capacity, low cost, and non-toxic nature. However, practical applications of LFO are hindered by its high residual alkali content and low electrical conductivity, which significantly reduce its delithiation capacity. To address these challenges, this study employed a high-temperature solid-phase method to prepare pure LFO material and used plasma-enhanced chemical vapor deposition (PECVD) to produce LFO@C material. The physicochemical and electrochemical properties of LFO@C were investigated under varying carbon-coating times and temperatures. Characterizations using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dissipative spectroscopy (EDS) showed that different PECVD carbon-coating parameters deposited different carbon layer structures on the LFO@C surface. A uniform and dense carbon layer was achieved when the material was carbon-coated at 500 ℃ for 2 h. X-ray diffraction (XRD) analysis confirmed that no irreversible phase transition occurred in LFO@C under these conditions, provided the carbon-coating temperature did not exceed 500 ℃ and the duration was limited to 2 h.The carbon content and electrical conductivity of LFO@C initially increased and then declined with extended carbon-coating time, while both properties increased steadily as the coating temperature rose. Residual alkali analysis demonstrated a significant reduction in the residual alkali content after PECVD carbon-coating. The surface of the carbon layer played a key role in the residual alkali value of LFO@C material. The electrochemical properties of the carbon-coated LFO@C materials have been greatly improved. Among the carbon-coated materials, the LFO-5002 material exhibited the highest initial charge specific capacity of 756.4 mAh/g at 2.0—4.2 V, and an irreversible capacity of 623.51 mAh/g, exceeding the uncoated LFO material by over 200 mAh/g. The results showed that PECVD could be used to coat the surface of LFO particles with a uniform and dense carbon layer. This process significantly reduced the residual alkali of the carbon-coated materials, while greatly enhancing electrical conductivity and capacity, and the prelithiation performance. In this work, the irreversible capacity of cathode prelithiation material LFO was significantly improved by carbon-coating modification, which provided technical guidance for the design of high capacity cathode prelithiation materials.

Key words: lithium-ion battery, cathode prelithium additive, Li5FeO4, plasma enhanced chemical vapor deposition(PECVD), carbon-coating modification

中图分类号: