储能科学与技术 ›› 2025, Vol. 14 ›› Issue (5): 1954-1968.doi: 10.19799/j.cnki.2095-4239.2024.1238

• 储能系统与工程 • 上一篇    下一篇

压缩空气储能系统双悬臂转子动平衡方法研究

毛豪杰1,2(), 张雪辉2,3(), 焦瀚晖2,3, 李和平1(), 刘彦1, 陈海生2,3   

  1. 1.杭州电子科技大学能源研究所,浙江 杭州 310018
    2.中国科学院工程热物理研究所,北京 100190
    3.中国科学院长时规模储能重点实验室,北京 100190
  • 收稿日期:2024-12-26 修回日期:2025-01-25 出版日期:2025-05-28 发布日期:2025-05-21
  • 通讯作者: 张雪辉,李和平 E-mail:maohaojie@hdu.edu.cn;zhangxuehui@iet.cn;peacelee@hdu.edu.cn
  • 作者简介:毛豪杰(2000—),男,硕士研究生,研究方向为转子动力学,E-mail:maohaojie@hdu.edu.cn
  • 基金资助:
    国家自然科学基金(52306285);山东能源研究院企业联合基金(SEI U202301);中国科学院国际合作局对外合作重点项目(117GJHZ2023009MI)

Study on dynamic balancing method of double cantilever rotor in compressed air energy storage system

Haojie MAO1,2(), Xuehui ZHANG2,3(), Hanhui JIAO2,3, Heping LI1(), Yan LIU1, Haisheng CHEN2,3   

  1. 1.Institute for Energy Studies, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
    2.Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    3.Key Laboratory of Long-Duration and Large-Scale Energy Storage, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2024-12-26 Revised:2025-01-25 Online:2025-05-28 Published:2025-05-21
  • Contact: Xuehui ZHANG, Heping LI E-mail:maohaojie@hdu.edu.cn;zhangxuehui@iet.cn;peacelee@hdu.edu.cn

摘要:

压缩空气储能(CAES)系统具有规模大、效率高等特点,被认为是最具发展潜力的大规模储能技术之一。整体齿式压缩机作为CAES系统的核心装备之一,其双悬臂转子的稳定性越来越受到人们的重视。为解决转子两端悬挂叶轮不平衡量引起的转子振动报警,通常选用多平衡面现场动平衡,而多平面平衡操作复杂且启停次数多,为简化平衡过程、延长双悬臂转子使用寿命,本工作对CAES系统双悬臂转子不平衡特性及动平衡方法进行了研究。首先,基于有限元分析软件对压缩机双悬臂转子进行了建模分析,研究表明对于双悬臂转子的双端不平衡,可解耦为单端不平衡进行平衡,从而避免生产过程中复杂的动平衡过程。然后,通过现场一端叶轮进行现场动平衡实验,对比了不同试重对轴系动平衡效果的影响,实验结果表明添加试重产生的振动幅值与相位变化量越大,计算所得配重的平衡效果越好。最后,在另一端叶轮完全模拟现场实际情况对叶轮出厂原始不平衡量进行盲平,验证了本研究方法的有效性和普适性,平衡效率达到84.01%。

关键词: 压缩空气储能, 转子动力学分析, 双悬臂转子, 现场动平衡, 影响系数法

Abstract:

Compressed air energy storage (CAES) systems are recognized for their large-scale capacity and high efficiency, making them one of the most promising technologies for large-scale energy storage. Within a CAES system, the stability of the double-cantilever rotor in the integral gear compressor is a critical focus area. To address rotor vibration alarms caused by the unbalance of the suspended impellers at both ends of the rotor, the multibalance plane field dynamic balancing is usually employed. However, to simplify the balancing process and prolong the service life of double-cantilever rotors, this study investigates the unbalance characteristics and dynamic balancing methods of double-cantilever rotors in CAES systems. First, a model analysis of the double-cantilever rotor of the compressor was carried out using finite element analysis software. The research shows that unbalance at both ends of the double-cantilever rotor can be decoupled into single-end unbalances. This approach eliminates the need for complex dynamic balancing during production. Next, a field dynamic balancing experiment was performed, focusing on one end of the impeller. The study compared the effects of different test weights on the shafting's dynamic balance performance. Experimental results show that greater vibration amplitude and phase changes caused by the addition of test weights led to improved balance effects when determining counterweights. Finally, at the other end of the impeller, the original unbalance of the impeller was completely simulated based on real-world conditions. This validated the effectiveness and universality of the research method. The balance efficiency reached 84.01%.

Key words: compressed air energy storage, rotor dynamics analysis, cantilever rotor, field dynamic balancing, influence coefficient method

中图分类号: