[1] |
唐西胜, 娄彦涛, 戴兴建, 等. 飞轮储能技术及其构网应用展望[J]. 电力系统自动化, 2025, 49(11): 1-13.
|
|
TANG X S, LOU Y T, DAI X J, et al. Flywheel energy storage technology and prospect of its grid-forming application[J]. Automation of Electric Power Systems, 2025, 49(11): 1-13.
|
[2] |
吴刚, 刘昆, 张育林. 磁悬浮飞轮技术及其应用研究[J]. 宇航学报, 2005, 26(3): 385-390. DOI: 10.3321/j.issn: 1000-1328.2005.03.029.
|
|
WU G, LIU K, ZHANG Y L. Application and study of magnetic bearing flywheel technology[J]. Journal of Astronautics, 2005, 26(3): 385-390. DOI: 10.3321/j.issn: 1000-1328.2005.03.029.
|
[3] |
LIN Z, LIU K, ZHANG W. Inertially stabilized platform for airborne remote sensing using magnetic breaings[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(1): 288-301.
|
[4] |
MU Q Q, LIU G, LEI X S. A RBFNN-based adaptive disturbance compensation approach applied to magnetic suspension inertially stabilized platform[J]. Mathematical Problems in Engineering, 2014, 2014(1): 657985. DOI: 10.1155/2014/657985.
|
[5] |
FANG J C, WANG C E, WEN T. Design and optimization of a radial hybrid magnetic bearing with separate poles for magnetically suspended inertially stabilized platform[J]. IEEE Transactions on Magnetics, 2014, 50(5): 8101011. DOI: 10.1109/TMAG.2013.2293482.
|
[6] |
张和洪. 多自由度磁浮式精密定位平台悬浮控制技术研究[D]. 长沙: 国防科学技术大学, 2015.
|
[7] |
杨盛林, 刘昱, 刘玉峰. 惯性平台热场分析及热设计的改进[J]. 中国惯性技术学报, 2005, 13(1): 5-9. DOI: 10.3969/j.issn.1005-6734. 2005.01.002.
|
|
YANG S L, LIU Y, LIU Y F. Research on heat field of inertial platform and improvement on heat design[J]. Journal of Chinese Inertial Technology, 2005, 13(1): 5-9. DOI: 10.3969/j.issn.1005-6734.2005.01.002.
|
[8] |
叶品州. 径向电磁轴承铁心损耗计算方法与温度场仿真分析[D]. 济南: 山东大学, 2020. DOI: 10.27272/d.cnki.gshdu.2020.002243.
|
[9] |
江善林. 高速永磁同步电机的损耗分析与温度场计算[D]. 哈尔滨: 哈尔滨工业大学, 2010.
|
|
JIANG S L. High-speed permanent magnet synchronous motor loss analysis and temperature field calculation[D]. Harbin: Harbin Institute of Technology, 2010.
|
[10] |
郝叶. 100kW、50000r/min高速永磁同步电机的设计与分析[D]. 沈阳: 沈阳工业大学, 2017.
|
|
HAO Y. Design and analysis of 100kW and 50000r/min high-speed permanent magnet synchronous motor[D]. Shenyang: Shenyang University of Technology, 2017.
|
[11] |
戴兴建, 卫海岗, 沈祖培. 储能飞轮转子轴承系统动力学设计与试验研究[J]. 机械工程学报, 2003, 39(4): 97-101. DOI: 10.3321/j.issn: 0577-6686.2003.04.022.
|
|
DAI X J, WEI H G, SHEN Z P. Dynamics design and experiment study of the rotor-bearing system of a flywheel energy storage system[J]. Chinese Journal of Mechanical Engineering, 2003, 39(4): 97-101. DOI: 10.3321/j.issn: 0577-6686.2003.04.022.
|
[12] |
陈小飞, 吉莉, 刘昆. 基于BP神经网络的磁悬浮飞轮控制[J]. 航天控制, 2010, 28(5): 3-8. DOI: 10.16804/j.cnki.issn1006-3242.2010. 05.001.
|
|
CHEN X F, JI L, LIU K. Control of magnetic suspended flywheel using BP neural network[J]. Aerospace Control, 2010, 28(5): 3-8. DOI: 10.16804/j.cnki.issn1006-3242.2010.05.001.
|
[13] |
陈峻峰, 刘昆, 梁文杰, 等. 磁悬浮飞轮储能系统机电耦合非线性动力学研究[J]. 动力学与控制学报, 2013, 11(3): 225-234. DOI: 10.6052/1672-6553-2013-062.
|
|
CHEN J F, LIU K, LIANG W J, et al. Study on nonlinear dynamics of electromechanical coupling in flywheel energy storage system based on active magnetic bearings[J]. Journal Fo Dynamics and Control, 2013, 11(3): 225-234. DOI: 10.6052/1672-6553-2013-062.
|
[14] |
赵巍龙, 张志洲, 李优, 等. 轻量型机载惯性稳定平台电磁轴承性能与温度场仿真分析[J]. 轴承, 2024(7): 115-121, 137. DOI: 10. 19533/j.issn1000-3762.2024.07.015.
|
|
ZHAO W L, ZHANG Z Z, LI Y, et al. Simulation analysis on performance and temperature field of electromagnetic bearings for lightweight airborne inertial stabilization platform[J]. Bearing, 2024(7): 115-121, 137. DOI: 10.19533/j.issn1000-3762.2024.07.015.
|
[15] |
刘钙, 朱熀秋. 飞轮储能用磁轴承综述[J]. 轴承, 2024(1): 9-18, 48. DOI: 10.19533/j.issn1000-3762.2024.01.002.
|
|
LIU G, ZHU H Q. Review of magnetic bearings for flywheel energy storage[J]. Bearing, 2024(1): 9-18, 48. DOI: 10.19533/j.issn1000-3762.2024.01.002.
|