储能科学与技术 ›› 2025, Vol. 14 ›› Issue (9): 3622-3635.doi: 10.19799/j.cnki.2095-4239.2025.0203

• 储能技术经济性分析 • 上一篇    下一篇

锂离子电池储能系统浸没液冷的技术经济性分析

林季锦1(), 刘倩1, 曲涛2, 李京鲲2, 黄东永2, 朱晓庆1, 巨星1()   

  1. 1.华北电力大学能源动力与机械工程学院,新型储能技术北京实验室,北京 102206
    2.嘉实多(上海)管理有限公司,上海 201206
  • 收稿日期:2025-02-28 修回日期:2025-04-07 出版日期:2025-09-28 发布日期:2025-09-05
  • 通讯作者: 巨星 E-mail:120242202501@ncepu.edu.cn;scottju@ncepu.edu.cn
  • 作者简介:林季锦(2002—),男,硕士研究生,研究方向为储能系统经济性,热管理仿真,E-mail:120242202501@ncepu.edu.cn
  • 基金资助:
    国家自然科学基金项目(52476196);BP嘉实多研究项目

Technical and economic analysis of liquid immersion cooling for lithium-ion battery energy storage system

Jijin LIN1(), Qian LIU1, Tao QU2, Jingkun LI2, Dongyong HUANG2, Xiaoqing ZHU1, Xing JU1()   

  1. 1.Beijing Laboratory of New Energy Storage Technology, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
    2.Castrol (Shanghai) Management Ltd, Shanghai 201206, China
  • Received:2025-02-28 Revised:2025-04-07 Online:2025-09-28 Published:2025-09-05
  • Contact: Xing JU E-mail:120242202501@ncepu.edu.cn;scottju@ncepu.edu.cn

摘要:

浸没储能系统因传热能力强、电池一致性佳等优势,逐渐受到关注。然而,对浸没式液冷的经济性,目前比较研究工作仍较为匮乏。本工作基于浸没储能系统的特点开展经济性分析研究。首先,对浸没储能系统技术对比分析,讨论储能系统方案中整包浸没、整簇浸没、储能柜以及储能集装箱的主要特点、系统结构和组成部件等。随后,基于浸没储能系统的总体结构和主要部件的成本,结合储能系统发热量计算模型和经济性分析模型,计算评估了4种组合下浸没储能系统的经济性。最后,本工作考虑浸没热管理下电池寿命变化分析了对储能系统经济性的影响,并计算了浸没储能系统的浸没液成本和结构对经济性的影响。结果表明在一定条件下,浸没储能系统的投资回收期、净现值和内部收益率等经济性指标均位于合理区间。以整包浸没的电池集装箱系统为例,其静态投资回收期为4.65年,动态投资回收期为5.81年,净现值为434.09万元,内部收益率为18.14%,浸没储能系统在经济性上可具备一定优势。

关键词: 锂离子电池储能, 浸没液冷, 经济性分析, 电池寿命

Abstract:

Liquid immersion cooling battery energy storage systems (BESS) have garnered significant attention owing to their superior heat transfer performance and high battery consistency. However, comprehensive studies on their economic feasibility remain scarce. This paper presents a technical and economic analysis of immersion-cooled BESS. The study begins with a technical comparison, detailing key features, system configurations, and components of pack immersion, cluster immersion, BESS cabinets, and BESS containers. Subsequently, based on the overall system structures, main component costs, heat generation calculation models, and economic evaluation frameworks, the economic performance of four immersion energy storage configurations is assessed. Furthermore, the impact of battery lifespan extension under immersion thermal management on overall system economics is examined, alongside an analysis of the influence of immersion fluid costs and structural parameters. The results indicate that, under certain conditions, economic metrics such as payback time (PBT), net present value (NPV), and internal rate of return (IRR) for immersion-cooled systems fall within a favorable range. For example, the pack-immersed battery container system exhibits a static PBT of 4.65 years, a dynamic PBT of 5.81 years, an NPV of CNY 4.3409 million, and an IRR of 18.14%, underscoring the economic advantages of immersion-cooled BESS.

Key words: lithium-ion battery energy storage, immersion cooling, economic analysis, battery lifespan

中图分类号: