储能科学与技术 ›› 2025, Vol. 14 ›› Issue (9): 3636-3647.doi: 10.19799/j.cnki.2095-4239.2025.0160
辛传奇(), 王文权(
), 陈伟, 周练武, 刘继芹, 解恺, 安金彪, 马涛, 熊昊天
收稿日期:
2025-02-22
修回日期:
2025-03-08
出版日期:
2025-09-28
发布日期:
2025-09-05
通讯作者:
王文权
E-mail:xinchuanqi@pipechina.com.cn;wangwenquan@pipechina.com.cn
作者简介:
辛传奇(1999—),男,硕士,助理工程师,主要研究地下储气库理论与工程,E-mail:xinchuanqi@pipechina.com.cn;
基金资助:
Chuanqi XIN(), Wenquan WANG(
), Wei CHEN, Lianwu ZHOU, Jiqin LIU, Kai XIE, Jinbiao AN, Tao MA, Haotian XIONG
Received:
2025-02-22
Revised:
2025-03-08
Online:
2025-09-28
Published:
2025-09-05
Contact:
Wenquan WANG
E-mail:xinchuanqi@pipechina.com.cn;wangwenquan@pipechina.com.cn
摘要:
随着全球能源结构的深刻变革和“双碳”目标的提出,压缩空气储能(compressed air energy storage, CAES)作为一种清洁、高效、大规模的储能技术,成为促进可再生能源并网消纳和构建新型电力系统的关键支撑,受到了广泛关注。本工作通过近期相关论文的调研,系统回顾了CAES技术的发展背景、需求、历程及建设现状,详细剖析了CAES技术的工作原理、技术分类及储气方式,综述了其在电源侧、电网侧和用户侧的多场景应用,并探讨了CAES技术的挑战和瓶颈。分析表明,CAES技术在电源侧、电网侧、用户侧均发挥着重要作用,但在效率、成本、环境影响和市场化收益模式方面仍面临挑战,通过技术创新(如高效核心设备研发、智能化调度系统引入)、模式优化(如虚拟电厂整合、共享储能模式推广)以及生态协同与国际合作(如行业标准制定、技术交流融合),CAES技术有望在未来能源转型中发挥更大作用。进一步展望了CAES技术的未来发展方向,包括高温储热材料的国产化、多技术融合、政策支持完善以及技术标准国际化,为CAES技术的规模化发展和能源行业的绿色转型提供参考,助力能源安全与“双碳”目标实现。
中图分类号:
辛传奇, 王文权, 陈伟, 周练武, 刘继芹, 解恺, 安金彪, 马涛, 熊昊天. 压缩空气储能技术多维度应用与发展路径分析[J]. 储能科学与技术, 2025, 14(9): 3636-3647.
Chuanqi XIN, Wenquan WANG, Wei CHEN, Lianwu ZHOU, Jiqin LIU, Kai XIE, Jinbiao AN, Tao MA, Haotian XIONG. Multi-dimensional application and development paths of compressed air energy storage technology[J]. Energy Storage Science and Technology, 2025, 14(9): 3636-3647.
表1
新型电力储能技术和经济指标特点"
电力储能类型 | 效率 /% | 响应时间 | 寿命 /a | 容量等级 | 单位成本 /(元/Wh) | 优点 | 缺点 | |
---|---|---|---|---|---|---|---|---|
电化学储能 | 锂离子电池 | 85~95 | 毫秒级 | 14~16 | 数十兆瓦时 | 1.8 | 能量密度大、自放电小 | 成本高、一致性差 |
钠离子电池 | 70~80 | 毫秒级 | 12~20 | 数十兆瓦时 | 2 | 响应快 | 成本高 | |
铅酸电池 | 70~80 | 秒级 | 2~3 | 数十兆瓦时 | 0.65 | 成本低 | 能量密度小,寿命短 | |
液流电池 | 65~75 | 毫秒级 | 10~15 | 数十兆瓦时 | 2.7 | 安全性好 | 能量密度小 | |
机械储能 | 压缩空气储能 | 50~70 | 分钟级 | 30~40 | 数百兆瓦时 | 1.4 | 环保,成本低,容量大,用地少 | 大型储能库选址困难 |
飞轮储能 | 70~90 | 毫秒级 | 20 | 数百兆瓦时 | 3 | 能量密度大、响应速度快 | 摩擦损失大、制造成本高 | |
电磁储能 | 超级电容储能 | >90 | 毫秒级 | 10~20 | 数十兆瓦时 | — | 寿命长、响应快、效率高 | 成本高、能量保持时间短 |
超导储能 | >90 | 毫秒级 | 20 | 数十兆瓦时 | — | 响应快、功率密度高 | 可靠性和经济性受限 | |
氢储能 | 35~42 | 秒级 | 15 | 数百兆瓦时 | 3.75 | 容量大、适用性强 | 能量转化率低 | |
热储能 | 熔盐储能 | <60 | 分钟级 | 25 | 数百兆瓦时 | 3 | 放电时间长、天气受限小 | 能量转化率低、材料要求高 |
表2
国内外主要已建、在建压缩空气储能项目"
名称 | 时间 | 类型 | 功率/MW | 效率/% | 储气设施 |
---|---|---|---|---|---|
德国Huntorf | 1978 | CAES | 290 | 42 | 盐穴 |
美国McIntosh | 1991 | CAES | 110 | 54 | 盐穴 |
日本上砂川町 | 2001 | CAES | 2 | <40 | 废弃矿坑 |
英国Highxiew | 2010 | LAES | 2.5 | <40 | 储罐 |
德国ADELE | 2010 | AA-CAES | 90 | 70 | 盐穴 |
美国SustainX | 2013 | I-CAES | 1.5 | <45 | 储罐 |
河北廊坊 | 2013 | SC-CAES | 1.5 | 52.1 | 储罐 |
江苏同里 | 2013 | I-CAES | 0.5 | — | 储罐 |
安徽芜湖 | 2014 | AA-CAES | 0.5 | 72 | 储罐 |
青海西宁 | 2016 | AA-CAES | 0.12 | 50 | 储罐 |
瑞士圣哥达基线隧道 | 2017 | AA-CAES | 0.7 | 63-74 | 地下岩洞 |
英国曼彻斯特 | 2018 | LAES | 5 | — | 储罐 |
澳大利亚Angas | 2019 | LAES | 5 | — | 储罐 |
山东肥城 | 2021 | AA-CAES | 10 | 60.7 | 盐穴 |
加拿大Goderich | 2019 | AA-CAES | 1.75 | 60 | 地下洞室 |
贵州毕节 | 2021 | SC-CAES | 10 | 60.2 | 储罐+管道 |
江苏金坛 | 2022 | AA-CAES | 60 | 58.2 | 盐穴 |
河北张家口 | 2022 | AA-CAES | 100 | 70.4 | 储罐+人工硐室 |
湖北应城 | 2024 | AA-CAES | 300 | >70 | 盐穴 |
山东肥城 | 2024 | AA-CAES | 300 | 72 | 盐穴 |
美国加California | 在建 | AA-CAES | 300 | — | 枯竭气藏 |
美国Bethel | 在建 | AA-CAES | 217 | — | 盐穴 |
英国 卡林顿 | 在建 | LAES | 50 | — | 储罐 |
青海格尔木 | 在建 | LAES | 60 | 75-85 | 储罐 |
甘肃酒泉 | 在建 | AA-CAES | 300 | — | 人工硐室 |
辽宁朝阳 | 在建 | AA-CAES | 300 | — | 人工硐室 |
湖南衡阳 | 在建 | AA-CAES | 100 | — | 盐穴 |
山东泰安 | 在建 | AA-CAES | 350 | 70 | 盐穴 |
表3
压缩空气储能主要技术分类及对比汇总表"
技术类型 | 效率范围 | 主要特点 | 优缺点 | 代表项目 | 技术成熟度 |
---|---|---|---|---|---|
传统补燃式压缩空气储能(CAES) | 42%~54% | 依赖化石燃料补燃加热,盐穴储气 | 优点:技术成熟; 缺点:碳排放高、效率低 | 德国Huntorf电站 美国McIntosh电站 | 商业运行 |
先进绝热压缩空气储能[ (AA-CAES) | 55%~75% | 回收压缩热,零碳排放,中/高温储热 | 优点:环保、效率较高; 缺点:温度波动影响效率 | 中国江苏金坛60 MW/300 MWh项目 | 示范阶段 |
等温压缩空气储能[ | 理论70%~95% 实际<45% | 等温压缩/膨胀,精确温控 | 优点:理论效率高; 缺点:设备要求高、经济性差 | 美国SustainX公司1.5 MW/1.5 MWh示范系统(已停止) | 停滞 |
液化空气储能[ (LAES) | 40%~85% | 空气液化存储,储能密度高 | 优点:环保、效率高; 缺点:系统复杂、成本高 | 英国Highview Power 5 MW/15 MWh项目 中国青海格尔木60 MW/600 MWh项目(在建) | 示范阶段 |
超临界压缩空气储能[ | 52.1%~70% | 超临界状态压缩,冷热双能存储 | 优点:高储能密度; 缺点:设备制造难、效率不稳定 | 中国廊坊1.5 MW示范装置 | 研发/示范阶段 |
水下压缩空气储能[ | 62%~81% | 利用水体静压,环境友好 | 优点:储能密度高、环境影响小; 缺点:维护难、成本高 | 加拿大安大略湖1.75 MW试验项目 | 研究/示范阶段 |
分布式压缩空气储能 (D-CAES) | — | 多站点分散部署,冷热电联供 | 优点:灵活性高、适配分布式能源;缺点:管理复杂、单位成本高 | 尚无典型大型项目 | 探索阶段 |
表4
不同储气方式特点分析表"
储气方式 | 特点 | 优缺点 | 典型应用案例 |
---|---|---|---|
盐穴[ | 利用地下盐穴储气,密封性好、力学稳定 | 优点:成本低、密封性优; 缺点:依赖盐矿资源,地域受限 | 德国Huntorf电站 美国McIntosh电站 中国江苏金坛电站 |
废弃油气藏[ | 改造枯竭油气田,利用已有地质信息 | 优点:节省选址成本; 缺点:需详细地质评估,安全性要求高 | 美国加州PG&E公司拟建300 MW电站 中国部分在研项目 |
人工硐室[ | 人工开挖硬岩层硐室,混凝土衬砌密封 | 优点:不受地域限制; 缺点:投资高、循环载荷下易泄漏 | 中国河北张家口项目 中国甘肃酒泉在建项目 中国辽宁朝阳在建项目 |
含水层[ | 利用地下水排出形成气顶,储气规模大 | 优点:分布广、成本低; 缺点:泄漏风险高、需复杂监测 | 美国匹兹菲尔德试验项目 |
废弃矿井巷道[ | 改造废弃矿井巷道,结构稳定 | 优点:资源再利用、储气容量大; 缺点:需加固维护,地质风险 | 日本上砂川町项目 中国大同云冈矿在建项目 |
金属材料[ | 采用高压储罐或管道,灵活性高 | 优点:不受地理限制; 缺点:储气空间小、效率低、成本高 | 美国SustainX 1.5 MW系统 中国河北廊坊1.5 MW示范系统 中国贵州毕节10 MW管道储气项目 |
复合材料[ | 使用柔性复合材料气囊或增强管道,耐腐蚀、抗疲劳 | 优点:安装灵活、原材料成本低; 缺点:维护成本高、结构失效风险 | 加拿大Hydrostor公司600 kW水下CAES示范工程 |
[1] | 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819. DOI: 10.13334/j.0258-8013.pcsee.220467. |
ZHANG Z G, KANG C Q. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819. DOI: 10.13334/j.0258-8013.pcsee.220467. | |
[2] | 徐三敏, 张云飞, 赵添辰, 等. "双碳" 目标下新型电力系统发展综述[J]. 水电与抽水蓄能, 2022, 8(6): 21-25. |
XU S M, ZHANG Y F, ZHAO T C, et al. Overview of new-type power system development under the background of carbon peaking and carbon neutrality[J]. Hydropower and Pumped Storage, 2022, 8(6): 21-25. | |
[3] | 张遥, 张依伦, 苏传奇, 等. 恒压压缩空气储能技术研究[J]. 热力发电, 2024, 53(9): 19-28. DOI: 10.19666/j.rlfd.202404058. |
ZHANG Y, ZHANG Y L, SU C Q, et al. Study on constant pressure compressed air energy storage technology[J]. Thermal Power Generation, 2024, 53(9): 19-28. DOI: 10.19666/j.rlfd. 202404058. | |
[4] | 谢小荣, 马宁嘉, 刘威, 等. 新型电力系统中储能应用功能的综述与展望[J]. 中国电机工程学报, 2023, 43(1): 158-169. DOI: 10.13334/j.0258-8013.pcsee.220025. |
XIE X R, MA N J, LIU W, et al. Functions of energy storage in renewable energy dominated power systems: Review and prospect[J]. Proceedings of the CSEE, 2023, 43(1): 158-169. DOI: 10.13334/j.0258-8013.pcsee.220025. | |
[5] | BUDT M, WOLF D, SPAN R, et al. A review on compressed air energy storage: Basic principles, past milestones and recent developments[J]. Applied Energy, 2016, 170: 250-268. DOI: 10.1016/j.apenergy.2016.02.108. |
[6] | 张玮灵, 古含, 章超, 等. 压缩空气储能技术经济特点及发展趋势[J]. 储能科学与技术, 2023, 12(4): 1295-1301. DOI: 10.19799/j.cnki.2095-4239.2022.0645. |
ZHANG W L, GU H, ZHANG C, et al. Technical economic characteristics and development trends of compressed air energy storage[J]. Energy Storage Science and Technology, 2023, 12(4): 1295-1301. DOI: 10.19799/j.cnki.2095-4239.2022.0645. | |
[7] | LI Y, LI Y, LIU Y N, et al. Compressed air energy storage in aquifers: Basic principles, considerable factors, and improvement approaches[J]. Reviews in Chemical Engineering, 2019: 561-584. DOI: 10.1515/revce-2019-0015. |
[8] | FAN J Y, LIU W, JIANG D Y, et al. Thermodynamic and applicability analysis of a hybrid CAES system using abandoned coal mine in China[J]. Energy, 2018, 157: 31-44. DOI: 10.1016/j.energy.2018.05.107. |
[9] | 赵坤. 全力推动我国能源行业绿色低碳转型[N]. 中国电力报, 2024-09-23(1). |
[10] | 王琢璞, 鲁刚, 岳芬. 中国储能产业高质量发展水平综合评价研究[J]. 储能科学与技术, 2025, 14(1): 427-438. DOI: 10.19799/j.cnki.2095-4239.2024.0670. |
WANG Z P, LU G, YUE F. Comprehensive evaluation of the high-quality development level of China's energy storage industry[J]. Energy Storage Science and Technology, 2025, 14(1): 427-438. DOI: 10.19799/j.cnki.2095-4239.2024.0670. | |
[11] | 胡江溢, 杨高峰, 宋兆欧, 等. 支持新型储能发展的国际政策与中国发展模式探讨[J]. 电网技术, 2024, 48(2): 469-480. DOI: 10.13335/j.1000-3673.pst.2023.1577. |
HU J Y, YANG G F, SONG Z O, et al. Preliminary discussion on the supporting policies and the China's development model of the new energy storage[J]. Power System Technology, 2024, 48(2): 469-480. DOI: 10.13335/j.1000-3673.pst.2023.1577. | |
[12] | 李建林, 梁策, 张则栋, 等. 新型电力系统下储能政策及商业模式分析[J]. 高压电器, 2023, 59(7): 104-116. DOI: 10.13296/j.1001-1609.hva.2023.07.012. |
LI J L, LIANG C, ZHANG Z D, et al. Analysis of energy storage policies and business models in new power system[J]. High Voltage Apparatus, 2023, 59(7): 104-116. DOI: 10.13296/j.1001-1609.hva.2023.07.012. | |
[13] | 王富强, 王汉斌, 武明鑫, 等. 压缩空气储能技术与发展[J]. 水力发电, 2022, 48(11): 10-15. DOI: 10.3969/j.issn.0559-9342.2022. 11.003. |
WANG F Q, WANG H B, WU M X, et al. Compressed air energy storage technology and development[J]. Water Power, 2022, 48(11): 10-15. DOI: 10.3969/j.issn.0559-9342.2022.11.003. | |
[14] | 刘辉. 超临界压缩二氧化碳储能系统热力学特性与热经济性研究[D]. 北京: 华北电力大学, 2017. DOI: 10.27140/d.cnki.ghbbu. 2017.000045. |
LIU H. Research on thermodynamic and thermoeconomic properties of super-critical compressed carbon dioxide energy storage[D]. Beijing: North China Electric Power University, 2017. DOI: 10.27140/d.cnki.ghbbu.2017.000045. | |
[15] | 国家能源局, 我国已建成投运新型储能装机4444万千瓦[EB/OL]. [2024-08-02]. https://www.nea.gov.cn/2024-08/02/c_1310783696.htm. |
[16] | CROTOGINO F, MOHMEYER K U, SCHARF R. Solution Mining Research Institute (SMRI) Spring Meeting. 2001[C]//Orlando, Florida, 2001. |
[17] | HOUNSLOW D R, GRINDLEY W, LOUGHLIN R M, et al. The development of a combustion system for a 110 MW CAES plant[J]. Journal of Engineering for Gas Turbines and Power, 1998, 120(4): 875-883. DOI: 10.1115/1.2818482. |
[18] | MEI S W, XUE X D, ZHANG T, et al. China's national demonstration project for compressed air energy storage achieved milestone in industrial operation[J]. iEnergy, 2022, 1(2): 143-144. |
[19] | 梅生伟, 公茂琼, 秦国良, 等. 基于盐穴储气的先进绝热压缩空气储能技术及应用前景[J]. 电网技术, 2017, 41(10): 3392-3399. DOI: 10.13335/j.1000-3673.pst.2017.1992. |
MEI S W, GONG M Q, QIN G L, et al. Advanced adiabatic compressed air energy storage system with salt cavern air storage and its application prospects[J]. Power System Technology, 2017, 41(10): 3392-3399. DOI: 10.13335/j.1000-3673.pst.2017.1992. | |
[20] | 陈海生, 李泓, 徐玉杰, 等. 2023年中国储能技术研究进展[J]. 储能科学与技术, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. |
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2023[J]. Energy Storage Science and Technology, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. | |
[21] | WANG S X, ZHANG X L, YANG L W, et al. Experimental study of compressed air energy storage system with thermal energy storage[J]. Energy, 2016, 103: 182-191. DOI: 10.1016/j.energy.2016.02.125. |
[22] | 工程热物理研究所, "先进压缩空气储能系统理论研究与技术研发"成果通过鉴定[EB/OL]. [2014-01-03]. https://www.cas.cn/ky/kyjz/201404/t20140403_4085514.shtml. |
[23] | 清华大学电机工程与应用电子技术系, 清华大学电机系承担的"压缩空气储能发电项目"取得重要进展[EB/OL]. [2014-11-28]. https://www.eea. tsinghua.edu.cn /info/1038/3879.htm. |
[24] | 中国科学院工程热物理研究所, 山东肥城国际首套盐穴先进压缩空气储能国家示范电站正式并网发电[EB/OL]. [2021-09-23]. https://iet.cas.cn/news/zh/202109/t20210923_6214054.html. |
[25] | 中国科学院工程热物理研究所, 国际首套集气装置储气10MW先进压缩空气储能系统成功并网[EB/OL]. [2021-10-15]. https://iet.cas.cn/news/zh/202110/t20211019_6225649.html |
[26] | 梅生伟, 张通, 张学林, 等. 非补燃压缩空气储能研究及工程实践——以金坛国家示范项目为例[J]. 实验技术与管理, 2022, 39(5): 1-8, 14. DOI: 10.16791/j.cnki.sjg.2022.05.001. |
MEI S W, ZHANG T, ZHANG X L, et al. Research and engineering practice of non-supplementary combustion compressed air energy storage: Taking Jintan national demonstration project as an example[J]. Experimental Technology and Management, 2022, 39(5): 1-8, 14. DOI: 10.16791/ j.cnki.sjg.2022.05.001. | |
[27] | 工程热物理研究所,国际首套百兆瓦先进压缩空气储能国家示范项目顺利并网[EB/OL]. 2022()[2022-01-05]. https://www.cas.cn/syky/202201/t20220102_4820551.shtml. |
[28] | 中国能建数科集团,世界首台(套)300兆瓦级压气储能电站并网发电[EB/OL]. [2024-04-09]. https://www.ceec.net.cn/art/2024/4/9/art_60823_2531480.html. |
[29] | 中国科学院, 山东肥城300兆瓦先进压缩空气储能国家示范电站并网发电[EB/OL]. [2024-04-30]. https://www.cas.cn/cm/202404/t20240430_5013393.shtml |
[30] | 万明忠, 杨易凡, 袁照威, 等. 大容量压缩空气储能关键技术[J]. 南方能源建设, 2023, 10(6): 26-33. DOI: 10.16516/j.gedi.issn2095-8676.2023.06.003. |
WAN M Z, YANG Y F, YUAN Z W, et al. Key technologies of large-scale compressed air energy storage[J]. Southern Energy Construction, 2023, 10(6): 26-33. DOI: 10.16516/j.gedi.issn2095-8676.2023.06.003. | |
[31] | 韩中合, 庞永超. 先进绝热压缩空气储能中蓄热系统的改进[J]. 分布式能源, 2016, 1(1): 22-27. DOI: 10.16513/j.cnki.10-1427/tk.2016.01.005. |
HAN Z H, PANG Y C. Modification of thermal energy storage system in AA-CAES[J]. Distributed Energy, 2016, 1(1): 22-27. DOI: 10.16513/j.cnki.10-1427/tk.2016.01.005. | |
[32] | 何青, 王珂. 等温压缩空气储能技术及其研究进展[J]. 热力发电, 2022, 51(8): 11-19. DOI: 10.19666/j.rlfd.202203042. |
HE Q, WANG K. Research progress of isothermal compressed air energy storage technology[J]. Thermal Power Generation, 2022, 51(8): 11-19. DOI: 10.19666/j.rlfd.202203042. | |
[33] | GOUDA E M, FAN Y L, BENAOUICHA M, et al. Review on Liquid Piston technology for compressed air energy storage[J]. Journal of Energy Storage, 2021, 43: 103111. DOI: 10.1016/j.est. 2021.103111. |
[34] | KING M, JAIN A, BHAKAR R, et al. Overview of current compressed air energy storage projects and analysis of the potential underground storage capacity in India and the UK[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110705. DOI: 10.1016/j.rser.2021.110705. |
[35] | 李季, 黄恩和, 范仁东, 等. 压缩空气储能技术研究现状与展望[J]. 汽轮机技术, 2021, 63(2): 86-89, 126. DOI: 10.3969/j.issn.1001-5884.2021.02.002. |
LI J, HUANG E H, FAN R D, et al. Research status and development prospects of compressed air energy storage technology[J]. Turbine Technology, 2021, 63(2): 86-89, 126. DOI: 10.3969/j.issn.1001-5884.2021.02.002. | |
[36] | 张家俊, 李晓琼, 张振涛, 等. 压缩二氧化碳储能系统研究进展[J]. 储能科学与技术, 2023, 12(6): 1928-1945. DOI: 10.19799/j.cnki. 2095-4239.2023.0005. |
ZHANG J J, LI X Q, ZHANG Z T, et al. Research progress of compressed carbon dioxide energy storage system[J]. Energy Storage Science and Technology, 2023, 12(6): 1928-1945. DOI: 10.19799/j.cnki.2095-4239.2023.0005. | |
[37] | 王志文, 熊伟, 王海涛, 等. 水下压缩空气储能研究进展[J]. 储能科学与技术, 2015, 4(6): 585-598. DOI: 10.3969/j.issn.2095-4239.2015.06.006. |
WANG Z W, XIONG W, WANG H T, et al. A review on underwater compressed air energy storage[J]. Energy Storage Science and Technology, 2015, 4(6): 585-598. DOI: 10.3969/j.issn.2095-4239.2015.06.006. | |
[38] | LIU Z, DING J L, HUANG X Y, et al. Analysis of a hybrid heat and underwater compressed air energy storage system used at coastal areas[J]. Applied Energy, 2024, 354: 122142. DOI: 10.1016/j.apenergy.2023.122142. |
[39] | 王晰, Jan SHAIR, 谢小荣. 水下储能技术综述与展望[J]. 电网技术, 2023, 47(10): 4121-4131. DOI: 10.13335/j.1000-3673.pst.2022.2411. |
WANG X, SHAIR J, XIE X R. Underwater grid-scale energy storage: Review and prospect[J]. Power System Technology, 2023, 47(10): 4121-4131. DOI: 10.13335/j.1000-3673.pst.2022.2411. | |
[40] | 杨春和, 王同涛. 深地储能研究进展[J]. 岩石力学与工程学报, 2022, 41(9): 1729-1759. DOI: 10.13722/j.cnki.jrme.2022.0829. |
YANG C H, WANG T T. Advance in deep underground energy storage[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(9): 1729-1759. DOI: 10.13722/j.cnki.jrme.2022.0829. | |
[41] | 郭朝斌, 李采, 杨利超, 等. 压缩空气地质储能研究现状及工程案例分析[J]. 中国地质调查, 2021, 8(4): 109-119. DOI: 10.19388/j.zgdzdc.2021.04.12. |
GUO C B, LI C, YANG L C, et al. Research review and engineering case analysis of geological compressed air energy storage[J]. Geological Survey of China, 2021, 8(4): 109-119. DOI: 10.19388/j.zgdzdc.2021.04.12. | |
[42] | 彭威, 商浩亮, 纪文栋, 等. 压缩空气储能电站人工硐室选址关键流程[J]. 电力勘测设计, 2023(6): 46-49. DOI: 10.13500/j.dlkcsj.issn1671-9913.2023.06.009. |
PENG W, SHANG H L, JI W D, et al. The key process of artificial chamber location of compressed air energy storage power station[J]. Electric Power Survey & Design, 2023(6): 46-49. DOI: 10.13500/j.dlkcsj.issn1671-9913.2023.06.009. | |
[43] | 阳小平. 中国地下储气库建设需求与关键技术发展方向[J]. 油气储运, 2023, 42(10): 1100-1106. |
YANG X P. Construction demand and key technology development direction of underground gas storage in China[J]. Oil & Gas Storage and Transportation, 2023, 42(10): 1100-1106. | |
[44] | 赵同彬, 刘淑敏, 马洪岭, 等. 废弃煤矿压缩空气储能研究现状与发展趋势[J]. 煤炭科学技术, 2023, 51(10): 163-176. |
ZHAO T B, LIU S M, MA H L, et al. Research status and development trend of compressed air energy storage in abandoned coal mines[J]. Coal Science and Technology, 2023, 51(10): 163-176. | |
[45] | 余海鹏, 祝海义, 赫广迅, 等. 储罐压缩空气储能全周期满负荷运行膨胀透平系统研究[J]. 汽轮机技术, 2022, 64(3): 203-206. |
YU H P, ZHU H Y, HE G X, et al. Research on expansion turbine system of full cycle and full load operation of storage tank compressed air energy storage[J]. Turbine Technology, 2022, 64(3): 203-206. | |
[46] | 刘宇, 张立忠, 高维新. 管线钢的历史沿革及未来展望[J]. 油气储运, 2022, 41(12): 1355-1362. |
LIU Y, ZHANG L Z, GAO W X. Historical development and future prospects of pipeline steel[J]. Oil & Gas Storage and Transportation, 2022, 41(12): 1355-1362. | |
[47] | CHEUNG B, CARRIVEAU R, TING D S. Storing energy underwater[J]. Mechanical Engineering, 2012, 134(12): 38-41. DOI: 10.1115/1.2012-dec-3. |
[48] | 李明, 郑云平, 亚夏尔·吐尔洪, 等. 新型储能政策分析与建议[J]. 储能科学与技术, 2023, 12(6): 2022-2031. DOI: 10.19799/j.cnki.2095-4239.2023.0140. |
LI M, ZHENG Y P, ARTHUR Turhoun, et al. Analysis and suggestions on new energy storage policy[J]. Energy Storage Science and Technology, 2023, 12(6): 2022-2031. DOI: 10.19799/j.cnki.2095-4239.2023.0140. | |
[49] | 国家发展改革委, 国家能源局. 关于印发«"十四五"新型储能发展实施方案»的通知[EB/OL]. [2022-01-29]. https://www.gov.cn/zhengce/ zhengceku/2022-03/22/content_5680417.htm. |
[50] | 国家发展改革委, 国家能源局.关于深化新能源上网电价市场化改革 促进新能源高质量发展的通知[EB/OL]. [2025-02-09]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202502/t20250209_1396066.html. |
[51] | 冯一帆, 蒋思炯, 付鑫, 等. 储热技术现状及相变储热材料的研究进展[J]. 信息记录材料, 2023, 24(2): 32-36. DOI: 10.16009/j.cnki.cn13-1295/tq.2023.02.055. |
FENG Y F, JIANG S J, FU X, et al. Current status of heat storage technology and research progress of phase change thermal storage materials[J]. Information Recording Materials, 2023, 24(2): 32-36. DOI: 10.16009/j.cnki.cn13-1295/tq.2023.02.055. | |
[52] | 国家发展改革委, 国家能源局. 关于印发«电力系统调节能力优化专项行动实施方案(2025—2027年)»的通知[EB/OL]. [2024-12-20]. https://www.gov.cn/zhengce/zhengceku/202501/content_6996643.htm. |
[53] | 张金宏, 杨建蒙, 李斌, 等. "光火储" 一体化发电系统的季节适应性分析[J]. 太阳能学报, 2024, 45(2): 300-308. DOI: 10.19912/j.0254-0096.tynxb.2022-1524. |
ZHANG J H, YANG J M, LI B, et al. Seasonal adaptability analysis of integrated power generation system of "photovoltaic thermal storage"[J]. Acta Energiae Solaris Sinica, 2024, 45(2): 300-308. DOI: 10.19912/j.0254-0096.tynxb.2022-1524. | |
[54] | 国家能源局, 关于印发«电力辅助服务管理办法»的通知[EB/OL]. [2024-12-20]. https://zfxxgk.nea.gov.cn/2021-12/21/c_1310391161.htm. |
[55] | 江苏省发展改革委, 关于印发加快推动我省新型储能项目高质量发展的若干措施的通知[EB/OL]. [2023-08-03]. https://fzggw.jiangsu.gov.cn/art /2023/8/3/art_51012_11064875.html. |
[56] | 利星行机械,利星行能源中标上海临港国际文化产业园CCHP能源站项目[EB/OL]. [2023-12-27]. https://www.lsh-cat.com/news/information/1994. |
[57] | 李红, 白雨鑫, 何青. 压缩二氧化碳储能系统膨胀机研究进展[J]. 热力发电, 2024, 53(2): 17-26. DOI: 10.19666/j.rlfd.202305077. |
LI H, BAI Y X, HE Q. Research progress of expander for compressed carbon dioxide energy storage system[J]. Thermal Power Generation, 2024, 53(2): 17-26. DOI: 10.19666/j.rlfd. 202305077. | |
[58] | 郭丁彰, 尹钊, 周学志, 等. 压缩空气储能系统储气装置研究现状与发展趋势[J]. 储能科学与技术, 2021, 10(5): 1486-1493. DOI: 10.19799/j.cnki.2095-4239.2021.0356. |
GUO D Z, YIN Z, ZHOU X Z, et al. Status and prospect of gas storage device in compressed air energy storage system[J]. Energy Storage Science and Technology, 2021, 10(5): 1486-1493. DOI: 10.19799/j.cnki.2095-4239.2021.0356. | |
[59] | 周小松, 孙高博, 王颖蛟, 等. 压缩空气储能人工硐室储气库选址影响因素研究[J]. 电力勘测设计, 2024(9): 46-51. DOI: 10.13500/j.dlkcsj.issn1671-9913.2024.09.009. |
ZHOU X S, SUN G B, WANG Y J, et al. Study on factors affecting site selection for artificial cavern CAES energy storage[J]. Electric Power Survey & Design, 2024(9): 46-51. DOI: 10.13500/j.dlkcsj.issn1671-9913.2024.09.009. | |
[60] | 国家能源局山东监管办公室, 关于印发«山东电力市场规则(试行)»的通知[EB/OL]. [2024-04-19]. https://sdb.nea.gov.cn/dtyw/tzgg/202404 /t20240419_261034.html. |
[61] | 国家能源局山东监管办公室, 关于印发«山东电力爬坡辅助服务市场交易规则(试行)»的通知[EB/OL]. [2024-02-08]. https://sdb.nea.gov.cn /dtyw/tzgg/202402/t20240208_245961.html. |
[62] | 王晓宇, 马果靖, 李彪, 等. 新型储能发展的场景和必要性分析[J]. 中国设备工程, 2024(22): 14-17. |
WANG X Y, MA G J, LI B, et al. Scenario and necessity analysis of new energy storage development[J]. China Plant Engineering, 2024(22): 14-17. |
[1] | 郑彦霖, 郭欢, 尹钊, 徐玉杰, 张华良, 陈海生. 微型压缩空气储能热电联供系统变负荷运行特性[J]. 储能科学与技术, 2025, 14(9): 3488-3499. |
[2] | 赵峰, 杨明成, 郝宁, 陈东, 刘佳, 陈逸伦. 压缩空气储能系统透平负荷控制策略的研究与仿真实现[J]. 储能科学与技术, 2025, 14(9): 3500-3508. |
[3] | 毛豪杰, 张雪辉, 焦瀚晖, 李和平, 刘彦, 陈海生. 压缩空气储能系统双悬臂转子动平衡方法研究[J]. 储能科学与技术, 2025, 14(5): 1954-1968. |
[4] | 李文杰. 压缩空气储能体系的计算机网络控制技术[J]. 储能科学与技术, 2025, 14(4): 1533-1535. |
[5] | 杨毅, 刘石, 黄正, 卜宪标, 吴蔚, 温喆然, 徐军涛, 李士杰. 基于水下压缩空气储能的远海电淡冰冷热联产系统性能分析[J]. 储能科学与技术, 2025, 14(3): 1160-1167. |
[6] | 许彬, 朱阳历, 王星, 熊军, 潘现超, 徐玉杰, 陈海生. 带径向进气腔室的轴流透平导叶周向非均匀分布研究[J]. 储能科学与技术, 2025, 14(1): 203-218. |
[7] | 李澎煜, 林曦鹏, 王亮, 陈海生, 王艺斐. 竖直波纹流道内超临界氮气流动与传热研究[J]. 储能科学与技术, 2024, 13(8): 2605-2614. |
[8] | 赵全胜, 朱玲, 刘尧伍, 郝军刚, 武明鑫. 压缩空气储能电站浅埋人工储气洞库设计基本理念和方法[J]. 储能科学与技术, 2024, 13(8): 2775-2784. |
[9] | 韩汶昕, 张雪辉, 许剑, 傅力宏, 蒋鑫, 郭文宾, 谢宇超, 陈海生. 压气机叶顶间隙流动与控制研究进展[J]. 储能科学与技术, 2024, 13(6): 1940-1962. |
[10] | 郭祚刚, 刘通, 徐敏, 徐申, 陈光明, 郝新月. 新型喷射增效压缩空气储能系统性能[J]. 储能科学与技术, 2024, 13(6): 1877-1887. |
[11] | 李杨. 压缩空气储能储气库热力学改进的数学模型[J]. 储能科学与技术, 2024, 13(5): 1707-1709. |
[12] | 张留淦, 周颖驰, 孙文兵, 叶楷, 陈龙祥. 利用ORC-VCR回收压缩热的预冷式CAES系统性能分析[J]. 储能科学与技术, 2024, 13(2): 611-622. |
[13] | 贺鸿鹏, 王小宇, 徐美娇, 马成龙, 张伟, 张丽. 考虑输电约束的风力发电系统压缩空气储能可靠性与经济性评价[J]. 储能科学与技术, 2024, 13(11): 4226-4234. |
[14] | 孟祥程. 大型压缩空气储能系统的土木工程建筑结构设计优化[J]. 储能科学与技术, 2024, 13(10): 3579-3581. |
[15] | 李文慧, 焦勇涵, 郭歌, 李佳俊, 邓建强. 压缩空气储能系统供冷性能提升[J]. 储能科学与技术, 2023, 12(9): 2833-2841. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||