1 |
CHIANG Y M. Building a better battery[J]. Science, 2010, 330(6010): 1485-1486.
|
2 |
CHEN J, WU J W, WANG X D, et al. Research progress and application prospect of solid-state electrolytes in commercial lithium-ion power batteries[J]. Energy Storage Materials, 2021, 35: 70-87.
|
3 |
LI L S, DENG Y F, CHEN G H. Status and prospect of garnet/polymer solid composite electrolytes for all-solid-state lithium batteries[J]. Journal of Energy Chemistry, 2020, 50: 154-177.
|
4 |
WU N, CHIEN P H, QIAN Y M, et al. Enhanced surface interactions enable fast Li+ conduction in oxide/polymer composite electrolyte[J]. Angewandte Chemie-International Edition, 2020, 59(10): 4131-4137.
|
5 |
WU N, CHIEN P H, LI Y T, et al. Fast Li+ conduction mechanism and interfacial chemistry of a NASICON/polymer composite electrolyte[J]. Journal of the American Chemical Society, 2020, 142(5): 2497-2505.
|
6 |
CAO Q, KUMRU B, ANTONIETTI M, et al. Graphitic carbon nitride and polymers: A mutual combination for advanced properties[J]. Materials Horizons, 2020, 7(3): 762-786.
|
7 |
LI H J, SUN B W, SUI L, et al. Preparation of water-dispersible porous g-C3N4 with improved photocatalytic activity by chemical oxidation[J]. Physical Chemistry Chemical Physics: PCCP, 2015, 17(5): 3309-3315.
|
8 |
MA W Z, WANG X Y, ZHANG F, et al. Synergetic effect of Li doping and Ag deposition for enhanced visible light photocatalytic performance of g-C3N4[J]. Materials Research Bulletin, 2017, 86: 72-79.
|
9 |
ZHANG W B, ZHANG Z J, CHOI S H, et al. Facile enhancement of photocatalytic efficiency of g-C3N4 by Li-intercalation[J]. Catalysis Today, 2019, 321/322: 67-73.
|
10 |
CHEN F, YANG D J, ZHA W P, et al. Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries[J]. Electrochimica Acta, 2017, 258: 1106-1114.
|
11 |
ZOU C, YANG L, LUO K, et al. Performance improvement of Li6PS5Cl solid electrolyte modified by poly(ethylene oxide)-based composite polymer electrolyte with ZSM-5 molecular sieves[J]. ACS Applied Energy Materials, 2022, 5(2): 2356-2365.
|
12 |
DAS S, GHOSH A. Ion conduction and relaxation in PEO-LiTFSI-Al2O3 polymer nanocomposite electrolytes[J]. Journal of Applied Physics, 2015, 117: doi:10.1063/1.4919721.
|
13 |
WANG X Z, ZHANG Y B, ZHANG X, et al. Lithium-salt-rich PEO/Li0.3La0.557TiO3 interpenetrating composite electrolyte with three-dimensional ceramic nano-backbone for all-solid-state lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(29): 24791-24798.
|
14 |
KWON S J, JUNG B M, KIM T, et al. Influence of Al2O3 nanowires on ion transport in nanocomposite solid polymer electrolytes[J]. Macromolecules, 2018, 51(24): 10194-10201.
|
15 |
潘春跃, 张倩, 戴潇燕, 等. 有效介质理论离子导电模型的修正[J]. 中南大学学报(自然科学版), 2007, 38(2): 297-302.
|
|
PAN C Y, ZHANG Q, DAI X Y, et al. Modification of ionic conductivity model based on effective medium theory[J]. Journal of Central South University (Science and Technology), 2007, 38(2): 297-302.
|
16 |
张林森, 郑银坤, 邵蕴铮, 等. 浇铸法制备的PEO基偏铝酸锂复合固态电解质[J]. 电池, 2020, 50(2): 114-117.
|
|
ZHANG L S, ZHENG Y K, SHAO Y Z, et al. PEO-based lithium aluminate composite solid electrolyte prepared by casting method[J]. Battery Bimonthly, 2020, 50(2): 114-117.
|
17 |
ZHANG Z, HUANG Y, GAO H, et al. MOF-derived ionic conductor enhancing polymer electrolytes with superior electrochemical performances for all solid lithium metal batteries[J]. Journal of Membrane Science, 2020, 598: doi: 10.1016/j.memsci.2019.117800.
|
18 |
SENGWA R J, DHATARWAL P, CHOUDHARY S. Role of preparation methods on the structural and dielectric properties of plasticized polymer blend electrolytes: Correlation between ionic conductivity and dielectric parameters[J]. Electrochimica Acta, 2014, 142: 359-370.
|
19 |
PAN K C, ZHANG L, QIAN W W, et al. A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(17): doi: 10.1002/adma.202000399.
|
20 |
GUAN X, WU Q P, ZHANG X W, et al. In-situ crosslinked single ion gel polymer electrolyte with superior performances for lithium metal batteries[J]. Chemical Engineering Journal, 2020, 382: doi: 10.1016/j.cej.2019.122935.
|
21 |
BOARETTO N, MEABE L, MARTINEZ-IBAÑEZ M, et al. Review—polymer electrolytes for rechargeable batteries: From nanocomposite to nanohybrid[J]. Journal of the Electrochemical Society, 2020, 167(7): 70524.
|
22 |
WANG X, ZHAI H W, QIE B Y, et al. Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte[J]. Nano Energy, 2019, 60: 205-212.
|
23 |
WAN J Y, XIE J, KONG X, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries[J]. Nature Nanotechnology, 2019, 14(7): 705-711.
|
24 |
PIANA G, BELLA F, GEOBALDO F, et al. PEO/LAGP hybrid solid polymer electrolytes for ambient temperature lithium batteries by solvent-free, "one pot" preparation[J]. Journal of Energy Storage, 2019, 26: doi: 10.1016/j.est.2019.100947.
|
25 |
王维哲, 宋瑞丰, 李彤, 等. g-C3N4增强聚氧化乙烯-聚己内酯共混钠离子固态电解质电化学性能[J]. 硅酸盐学报, 2022, 50(1): 47-54.
|
|
WANG W Z, SONG R F, LI T, et al. Enhancement of electrochemical performance of polyoxyethylene-polycaprolactone blended Na-ion solid electrolyte by incorporating g-C3N4[J]. Journal of the Chinese Ceramic Society, 2022, 50(1): 47-54.
|
26 |
周伟东, 黄秋, 谢晓新, 等. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805.
|
|
ZHOU W D, HUANG Q, XIE X X, et al. Research progress of polymer electrolyte for solid state lithium batteries[J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805.
|
27 |
JINISHA B, ANILKUMAR K M, MANOJ M, et al. Poly (ethylene oxide) (PEO)-based, sodium ion-conducting‚ solid polymer electrolyte films, dispersed with Al2O3 filler, for applications in sodium ion cells[J]. Ionics, 2018, 24(6): 1675-1683.
|
28 |
HOMANN G, STOLZ L, NAIR J, et al. Poly(ethylene oxide)-based electrolyte for solid-state-lithium-batteries with high voltage positive electrodes: Evaluating the role of electrolyte oxidation in rapid cell failure[J]. Scientific Reports, 2020, 10: 4390.
|