1 |
JIA H P, LI X L, SONG J H, et al. Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes[J]. Nature Communications, 2020, 11: 1474.
|
2 |
WAN M T, KANG S J, WANG L, et al. Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode[J]. Nature Communications, 2020, 11: 829.
|
3 |
WANG B Y, WEI Y H, FANG H Y, et al. Mn-substituted tunnel-type polyantimonic acid confined in a multidimensional integrated architecture enabling superfast-charging lithium-ion battery anodes[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2020, 8(3): doi: 10.1002/advs.202002866.
|
4 |
PAN Q C, ZHENG F H, WU Y N, et al. MoS2-covered SnS nanosheets as anode material for lithium-ion batteries with high capacity and long cycle life[J]. Journal of Materials Chemistry A, 2018, 6(2): 592-598.
|
5 |
JIANG F, ZHANG L M, ZHAO W Q, et al. Microstructured sulfur-doped carbon-coated Fe7S8 composite for high-performance lithium and sodium storage[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(31): 11783-11794.
|
6 |
WANDT J, JAKES P, GRANWEHR J, et al. Quantitative and time-resolved detection of lithium plating on graphite anodes in lithium ion batteries[J]. Materials Today, 2018, 21(3): 231-240.
|
7 |
SANTHOSHKUMAR P, NAGARAJU G, SHAJI N, et al. Hierarchical iron selenide nanoarchitecture as an advanced anode material for high-performance energy storage devices[J]. Electrochimica Acta, 2020, 356: doi:10.1016/j.electacta.2020.136833.
|
8 |
MENG Y, NI G, JIN X, et al. Recent advances in the application of phosphates and borates as electrocatalysts for water oxidation[J]. Materials Today Nano, 2020, 12: doi: 10.1016/j.mtnano.2020.100095.
|
9 |
罗飞, 褚赓, 黄杰, 等. 锂离子电池基础科学问题(Ⅷ)—负极材料[J]. 储能科学与技术, 2014, 3(2): 146-163.
|
|
LUO F, CHU G, HUANG J, et al. Fundamental scientific aspects of lithium batteries(Ⅷ)—Anode electrode materials[J]. Energy Storage Science and Technology, 2014, 3(2): 146-163.
|
10 |
TIAN Y, WANG Z Y, FU J M, et al. FeSe2/carbon nanotube hybrid lithium-ion battery for harvesting energy from triboelectric nanogenerators[J]. Chemical Communications (Cambridge, England), 2019, 55(73): 10960-10963.
|
11 |
ZHAO W X, GUO C, LI C M. Lychee-like FeS2@FeSe2 core-shell microspheres anode in sodium ion batteries for large capacity and ultralong cycle life[J]. Journal of Materials Chemistry, 2017, 5: 19195-19202.
|
12 |
LI D, ZHOU J S, CHEN X H, et al. Achieving ultrafast and stable Na-ion storage in FeSe2 nanorods/graphene anodes by controlling the surface oxide[J]. ACS Applied Materials & Interfaces, 2018, 10(26): 22841-22850.
|
13 |
位广玲, 江颖, 周佳辉, 等. 钠离子电池金属氧/硫/硒化物负极材料研究进展[J]. 储能科学与技术, 2020, 9(5): 1318-1326.
|
|
WEI G L, JIANG Y, ZHOU J H, et al. Research progress on metal oxides/sulfides/selenides anode materials of sodium ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1318-1326.
|
14 |
ZHANG Y, ZHANG Z, ZHU Y, et al. N-doped graphene encapsulated MoS2 nanosphere composite as a high-performance anode for lithium-ion batteries[J]. Nanotechnology, 2022, 33(23): 2022Mar17;33(23).
|
15 |
WANG H, WANG X, LI Q, et al. Constructing three-dimensional porous carbon framework embedded with FeSe2 nanoparticles as an anode material for rechargeable batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(45): 38862-38871.
|
16 |
WANG J, KONG F J, CHEN J Y, et al. Metal-organic-framework-derived FeSe2@ carbon embedded into nitrogen-doped graphene sheets with binary conductive networks for rechargeable batteries[J]. ChemElectroChem, 2019, 6(10): 2805-2811.
|
17 |
KONG F J, LV L Z, GU Y, et al. Nano-sized FeSe2 anchored on reduced graphene oxide as a promising anode material for lithium-ion and sodium-ion batteries[J]. Journal of Materials Science, 2019, 54(5): 4225-4235.
|
18 |
BAI J, WU H M, WANG S Q, et al. Synthesis and electrochemical performances of FeSe2/C as anode material for lithium ion batteries[J]. Journal of Electronic Materials, 2019, 48(9): 5933-5940.
|
19 |
YE W K, WANG K, YIN W H, et al. Rodlike FeSe2-C derived from metal organic gel wrapped with reduced graphene as an anode material with excellent performance for lithium-ion batteries[J]. Electrochimica Acta, 2019, 323: doi:10.1016/j.electacta.2019.134817.
|
20 |
Lin H Z, Li M L, Yang X, et al. Nanosheets-assembled CuSe crystal pillar as a stable and high-power anode for sodium-ion and potassium-ion batteries[J]. Advanced Energy Materials, 2019, 9(20): doi: 10.1002/aenm.201900323.
|
21 |
XIE X, MA X Y, YIN Z L, et al. Bimetallic heterojunction of CuSe/ZnSe@Nitrogen-doped carbon with modified band structures for fast sodium-ion storage[J]. Chemical Engineering Journal, 2022, 446: doi: 10.1016/j.cej.2022.137366.
|
22 |
LIANG T, WANG H W, WANG R, et al. Nitrogen-doped carbon nanotube-buffered FeSe2 anodes for fast-charging and high-capacity lithium storage[J]. Electrochimica Acta, 2021, 389: doi: 10.1016/j.electacta.2021.138686.
|