1 |
HUANG Q A, HUI R, WANG B W, et al. A review of AC impedance modeling and validation in SOFC diagnosis[J]. Electrochimica Acta, 2007, 52(28): 8144-8164.
|
2 |
HABTE B T, JIANG F M. Effect of microstructure morphology on Li-ion battery graphite anode performance: Electrochemical impedance spectroscopy modeling and analysis[J]. Solid State Ionics, 2018, 314: 81-91.
|
3 |
NITTA N, WU F X, LEE J T, et al. Li-ion battery materials: Present and future[J]. Materials Today, 2015, 18(5): 252-264.
|
4 |
闫琦, 兰元其, 姚文娇, 等. 聚阴离子型二次离子电池正极材料研究进展[J]. 储能科学与技术, 2021, 10(3): 872-886.
|
|
YAN Q, LAN Y Q, YAO W J, et al. Recent development of polyanionic cathodes for second ion batteries[J]. Energy Storage Science and Technology, 2021, 10(3): 872-886.
|
5 |
CHANG B Y, AHN E, PARK S M. Real-time staircase cyclic voltammetry Fourier transform electrochemical impedance spectroscopic studies on underpotential deposition of lead on gold[J]. The Journal of Physical Chemistry C, 2008, 112(43): 16902-16909.
|
6 |
JIN T, LI H X, ZHU K J, et al. Polyanion-type cathode materials for sodium-ion batteries[J]. Chemical Society Reviews, 2020, 49(8): 2342-2377.
|
7 |
张玉婷, 徐天野, 王振华, 等. 钠离子电池关键电极材料研究进展[J]. 电子元件与材料, 2020, 39(11): 21-32.
|
|
ZHANG Y T, XU T Y, WANG Z H, et al. Recent advances of electrode materials for sodium ion battery[J]. Electronic Components and Materials, 2020, 39(11): 21-32.
|
8 |
REN M, FANG H Y, WANG C C, et al. Advances on manganese-oxide-based cathodes for Na-ion batteries[J]. Energy & Fuels, 2020, 34(11): 13412-13426.
|
9 |
HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: Present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614.
|
10 |
LEE D H, XU J, MENG Y S. An advanced cathode for Na-ion batteries with high rate and excellent structural stability[J]. Physical Chemistry Chemical Physics: PCCP, 2013, 15(9): 3304-3312.
|
11 |
LIU S Q, WANG B Y, ZHANG X, et al. Reviving the lithium-manganese-based layered oxide cathodes for lithium-ion batteries[J]. Matter, 2021, 4(5): 1511-1527.
|
12 |
王勇, 刘雯, 郭瑞, 等. 钠离子电池正极材料研究进展[J]. 化工进展, 2018, 37(8): 3056-3066.
|
|
WANG Y, LIU W, GUO R, et al. Recent development of cathode materials for sodium-ion batteries[J]. Chemical Industry and Engineering Progress, 2018, 37(8): 3056-3066.
|
13 |
龙云飞, 苏静, 吕小艳, 等. 锂/钠离子电池过渡金属氟磷酸盐正极材料研究进展[J]. 无机盐工业, 2020, 52(3): 28-34, 38.
|
|
LONG Y F, SU J, LÜ X Y, et al. Advances in transition metal fluoride phosphate cathode materials for lithium-ion batteries and sodium-ion batteries[J]. Inorganic Chemicals Industry, 2020, 52(3): 28-34, 38.
|
14 |
FANG T C, GUO S H, JIANG K Z, et al. Revealing the critical role of titanium in layered manganese-based oxides toward advanced sodium-ion batteries via a combined experimental and theoretical study[J]. Small Methods, 2019, 3(4): doi: 10.1002/smtd.201800183.
|
15 |
GAO X, CHEN J, LIU H Q, et al. Copper-substituted NaxMO2 (M=Fe, Mn) cathodes for sodium ion batteries: Enhanced cycling stability through suppression of Mn(III) formation[J]. Chemical Engineering Journal, 2021, 406: doi: 10.1016/j.cej.2020.126830.
|
16 |
LIN X C, HOU X, WU X B, et al. Exploiting Na2MnPO4F as a high-capacity and well-reversible cathode material for Na-ion batteries[J]. RSC Adv, 2014, 4(77): 40985-40993.
|
17 |
GHOSH M P, DATTA S, SHARMA R, et al. Copper doped nickel ferrite nanoparticles: Jahn-Teller distortion and its effect on microstructural, magnetic and electronic properties[J]. Materials Science and Engineering: B, 2021, 263: doi: 10.1016/j.mseb.2020.114864.
|
18 |
GHOSH S, BARMAN N, SENGUTTUVAN P. Impact of Mg2+ and Al3+ substitutions on the structural and electrochemical properties of NASICON-NaxVMn0.75M0.25(PO4)3 (M = Mg and Al) cathodes for sodium-ion batteries[J]. Small, 2020, 16(45): doi: 10.1002/smll.202003973.
|
19 |
HAN M H, GONZALO E, SINGH G, et al. A comprehensive review of sodium layered oxides: Powerful cathodes for Na-ion batteries[J]. Energy & Environmental Science, 2015, 8(1): 81-102.
|
20 |
QIU B, YIN C, XIA Y G, et al. Synthesis of three-dimensional nanoporous Li-rich layered cathode oxides for high volumetric and power energy density lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(4): 3661-3666.
|
21 |
ZHANG P P, ZHAI X H, HUANG H, et al. Synergistic Na+ and F- co-doping modification strategy to improve the electrochemical performance of Li-rich Li1 ·20Mn0 ·54Ni0 ·13Co0 ·13O2 cathode[J]. Ceramics International, 2020, 46(15): 24723-24736.
|
22 |
ZHENG J M, WU X B, YANG Y. Improved electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material by fluorine incorporation[J]. Electrochimica Acta, 2013, 105: 200-208.
|
23 |
ZHANG L, WANG C C, LIU Y C, et al. Suppressing interlayer-gliding and Jahn-Teller effect in P2-type layered manganese oxide cathode via Mo doping for sodium-ion batteries[J]. Chemical Engineering Journal, 2021, 426: doi: 10.1016/j.cej.2021.130813.
|
24 |
JAHN Teller. Stability of polyatomic molecules in degenerate electronic states II-Spin degeneracy[C]//Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1938, 164(916): 117-131.
|
25 |
LONGUET-Higgins H C. The intersection of potential energy surfaces in polyatomic molecules[C]//Proceedings of the Royal Society of London A: Mathematical and Physical Sciences, 1975, 344(1637): 147-156.
|
26 |
LONGUET-Higgins H C. Studies of the Jahn-Teller effect II. The dynamical problem[C]//Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1958, 244(1236): 1-16.
|
27 |
KULKA A, MARINO C, WALCZAK K, et al. Influence of Na/Mn arrangements and P2/P'2 phase ratio on the electrochemical performance of NaxMnO2 cathodes for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(12): 6022-6033.
|
28 |
CLÉMENT R J, BILLAUD J, ROBERT ARMSTRONG A, et al. Structurally stable Mg-doped P2-Na2/3Mn1- yMgyO2 sodium-ion battery cathodes with high rate performance: Insights from electrochemical, NMR and diffraction studies[J]. Energy & Environmental Science, 2016, 9(10): 3240-3251.
|
29 |
CHOI J U, PARK Y J, JO J H, et al. Unraveling the role of earth-abundant Fe in the suppression of jahn-teller distortion of P'2-type Na2/3MnO2: Experimental and theoretical studies[J]. ACS Applied Materials & Interfaces, 2018, 10(48): 40978-40984.
|
30 |
LI S Y, ZHU K L, ZHAO D N, et al. Porous LiMn2O4 with Al2O3 coating as high-performance positive materials[J]. Ionics, 2019, 25(5): 1991-1998.
|
31 |
STRELTSOV S V, KHOMSKII D I. Jahn-Teller effect and spin-orbit coupling: Friends or foes? [J]. Physical Review X, 2020, 10(3): doi: 10.1103/physrevx.10.031043.
|
32 |
WANG P F, YOU Y, YIN Y X, et al. Layered oxide cathodes for sodium-ion batteries: Phase transition, air stability, and performance[J]. Advanced Energy Materials, 2018, 8(8): doi: 10.1002/aenm.201701912.
|
33 |
XIAO Y, ABBASI N M, ZHU Y F, et al. Layered oxide cathodes promoted by structure modulation technology for sodium-ion batteries[J]. Advanced Functional Materials, 2020, 30(30): doi: 10.1002/adfm.202001334.
|
34 |
LING Y X, ZHOU J, GUO S, et al. Copper-stabilized P'2-type layered manganese oxide cathodes for high-performance sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(49): 58665-58673.
|
35 |
RODRÍGUEZ R A, PÉREZ-CAPPE E L, LAFFITA Y M, et al. Structural defects in LiMn2O4 induced by gamma radiation and its influence on the Jahn-Teller effect[J]. Solid State Ionics, 2018, 324: 77-86.
|
36 |
KUMAKURA S, TAHARA Y, KUBOTA K, et al. Sodium and manganese stoichiometry of P2-type Na2/3MnO2[J]. Angewandte Chemie International Edition, 2016, 55(41): 12760-12763.
|
37 |
ZHANG H Z, QIAO Q Q, LI G R, et al. PO4 3- polyanion-doping for stabilizing Li-rich layered oxides as cathode materials for advanced lithium-ion batteries[J]. J Mater Chem A, 2014, 2(20): 7454-7460.
|
38 |
AN J, SHI L Y, CHEN G R, et al. Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(37): 19738-19744.
|
39 |
YANG L, LIU Z P, SHEN X, et al. Effect of vacancy-tailored Mn3+ spinning on enhancing structural stability[J]. Energy Storage Materials, 2022, 44: 231-238.
|
40 |
MANTHIRAM A. A reflection on lithium-ion battery cathode chemistry[J]. Nature Communications, 2020, 11: 1550.
|
41 |
NAYAK P K, GRINBLAT J, LEVI M, et al. Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-ion batteries[J]. Advanced Energy Materials, 2016, 6(8): doi: 10.1002/aenm.201502398.
|
42 |
ZHAO S, BAI Y, CHANG Q J, et al. Surface modification of spinel LiMn2O4 with FeF3 for lithium ion batteries[J]. Electrochimica Acta, 2013, 108: 727-735.
|
43 |
LIU H W, CHENG C X, ZONG Q H, et al. The effect of ZnO coating on LiMn2O4 cycle life in high temperature for lithium secondary batteries[J]. Materials Chemistry and Physics, 2007, 101(2/3): 276-279.
|
44 |
YU L H, QIU X P, XI J Y, et al. Enhanced high-potential and elevated-temperature cycling stability of LiMn2O4 cathode by TiO2 modification for Li-ion battery[J]. Electrochimica Acta, 2006, 51(28): 6406-6411.
|
45 |
ZHAO H Y, GAO X Y, LI Y F, et al. Synergistic effects of zinc-doping and nano-rod morphology on enhancing the electrochemical properties of spinel Li-Mn-O material[J]. Ceramics International, 2019, 45(14): 17591-17597.
|
46 |
JIANG J B, LI W, DENG H J, et al. Research on improving the electrochemical performance of LiMn2O4 via Cr-doping[J]. Journal of Nanoscience and Nanotechnology, 2019, 19(1): 125-129.
|
47 |
WANG S H, YANG J, WU X B, et al. Toward high capacity and stable manganese-spinel electrode materials: A case study of Ti-substituted system[J]. Journal of Power Sources, 2014, 245: 570-578.
|
48 |
ZHANG S, DENG W T, MOMEN R, et al. Element substitution of a spinel LiMn2O4 cathode[J]. Journal of Materials Chemistry A, 2021, 9(38): 21532-21550.
|