1 |
HUANG K, SINGHAL S C. Cathode-supported tubular solid oxide fuel cell technology: A critical review[J]. Journal of Power Sources, 2013, 237: 84-97.
|
2 |
BELLO I T, ZHAI S, ZHAO S Y, et al. Scientometric review of proton-conducting solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2021, 46(75): 37406-37428.
|
3 |
VAN ECK N J, WALTMAN L. Software survey: VOSviewer, a computer program for bibliometric mapping[J]. Scientometrics, 2010, 84(2): 523-538.
|
4 |
ARIA M, CUCCURULLO C. Bibliometrix: An R-tool for comprehensive science mapping analysis[J]. Journal of Informetrics, 2017, 11(4): 959-975.
|
5 |
HAN Z Y, YANG Z B, HAN M F. Optimization of Ni-YSZ anodes for tubular SOFC by a novel and efficient phase inversion-impregnation approach[J]. Journal of Alloys and Compounds, 2018, 750: 130-138.
|
6 |
HEDAYAT N, PANTHI D, DU Y H. Inert substrate-supported microtubular solid oxide fuel cells based on highly porous ceramic by low-temperature co-sintering[J]. Ceramics International, 2019, 45(1): 579-587.
|
7 |
LI T, HEENAN T M M, RABUNI M F, et al. Design of next-generation ceramic fuel cells and real-time characterization with synchrotron X-ray diffraction computed tomography[J]. Nature Communications, 2019, 10: 1497.
|
8 |
CHOI D W, OHASHI M, LOZANO C A, et al. Sulfur diffusion of hydrogen sulfide contaminants to cathode in a micro-tubular solid oxide fuel cell[J]. Electrochimica Acta, 2019, 321: doi: 10.1016/j.electacta.2019.134713.
|
9 |
WANG S F, HSU Y F, HSIA P, et al. Design and characterization of apatite La9.8Si5.7Mg0.3O26± δ-based micro-tubular solid oxide fuel cells[J]. Journal of Power Sources, 2020, 460: doi: 10.1016/j.jpowsour.2020.228072.
|
10 |
LI T, LU X K, RABUNI M F, et al. High-performance fuel cell designed for coking-resistance and efficient conversion of waste methane to electrical energy[J]. Energy & Environmental Science, 2020, 13(6): 1879-1887.
|
11 |
REN C L, GAN Y, YANG C Y, et al. Fabrication and characterization of direct methane fueled thin film SOFCs supported by microchannel-structured microtubular substrates[J]. ACS Applied Energy Materials, 2020, 3(2): 1831-1841.
|
12 |
LIN Z X, ZHAO K, CHENG G, et al. Catalyst layer supported solid oxide fuel cells running on methane[J]. Journal of Power Sources, 2021, 507: doi: 10.1016/j.jpowsour.2021.230317.
|
13 |
WANG S F, HSU Y F, LIAO Y L, et al. High-performance NdSrCo2O5+ δ-Ce0.8Gd0.2O2- δ composite cathodes for electrolyte-supported microtubular solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2021, 46(62): 31778-31787.
|
14 |
LI G D, GOU Y J, CHENG X J, et al. Enhanced electrochemical performance of the Fe-based layered perovskite oxygen electrode for reversible solid oxide cells[J]. ACS Applied Materials & Interfaces, 2021, 13(29): 34282-34291.
|
15 |
ISHIHARA T, TAN Z, SONG J T, et al. Sequential-infiltration of Ce and Ni in NiO-YSZ fuel electrode for tubular type solid oxide reversible cells (SORC) using LaGaO3 electrolyte film[J]. Solid State Ionics, 2022, 379: doi: 10.1016/j.ssi.2022.115914.
|
16 |
AMIRI T, SINGH K, SANDHU N K, et al. High performance tubular solid oxide fuel cell based on Ba0.5Sr0.5Ce0.6Zr0.2Gd0.1Y0.1O3- δ Proton conducting electrolyte[J]. Journal of the Electrochemical Society, 2018, 165(10): doi: 10.1149/2.0331810jes.
|
17 |
KUROHA T, YAMAUCHI K, MIKAMI Y, et al. Effect of added Ni on defect structure and proton transport properties of indium-doped Barium zirconate[J]. International Journal of Hydrogen Energy, 2020, 45(4): 3123-3131.
|
18 |
VAFAEENEZHAD S, SANDHU N K, HANIFI A R, et al. Development of proton conducting fuel cells using nickel metal support[J]. Journal of Power Sources, 2019, 435: doi: 10.1016/j.jpowsour.2019.226763.
|
19 |
CHEN C C, DONG Y, LI L, et al. Electrochemical properties of micro-tubular intermediate temperature solid oxide fuel cell with novel asymmetric structure based on BaZr0.1Ce0.7Y0.1Yb0.1O3- δ proton conducting electrolyte[J]. International Journal of Hydrogen Energy, 2019, 44(31): 16887-16897.
|
20 |
LI G D, GOU Y J, REN R Z, et al. Fluorinated Pr2NiO4+ δ as high-performance air electrode for tubular reversible protonic ceramic cells[J]. Journal of Power Sources, 2021, 508: doi: 10.1016/j.jpowsour.2021.230343.
|
21 |
ZHU L Z, O'HAYRE R, SULLIVAN N P. High performance tubular protonic ceramic fuel cells via highly-scalable extrusion process[J]. International Journal of Hydrogen Energy, 2021, 46(54): 27784-27792.
|
22 |
PAN Y X, ZHANG H, XU K, et al. A high-performance and durable direct NH3 tubular protonic ceramic fuel cell integrated with an internal catalyst layer[J]. Applied Catalysis B: Environmental, 2022, 306: doi: 10.1016/j.apcatb.2022.121071.
|
23 |
HOU M Y, PAN Y X, CHEN Y. Enhanced electrochemical activity and durability of a direct ammonia protonic ceramic fuel cell enabled by an internal catalyst layer[J]. Separation and Purification Technology, 2022, 297: doi: 10.1016/j.seppur.2022.121483.
|
24 |
LI G D, GOU Y J, QIAO J S, et al. Recent progress of tubular solid oxide fuel cell: From materials to applications[J]. Journal of Power Sources, 2020, 477: doi: 10.1016/j.jpowsour.2020.228693.
|
25 |
LIU Y X, WANG S F, HSU Y F, et al. Characteristics of La0.8Sr0.2Ga0.8Mg0.2O3- δ-supported micro-tubular solid oxide fuel cells with LaCo0.4Ni0.6- xCuxO3- δ cathodes[J]. International Journal of Hydrogen Energy, 2018, 43(11): 5703-5713.
|
26 |
LAWLOR V. Review of the micro-tubular solid oxide fuel cell (II): Cell design issues and research activities[J]. Journal of Power Sources, 2013, 240: 421-441.
|
27 |
HAN Z Y, YANG Z B, HAN M F. Fabrication of metal-supported tubular solid oxide fuel cell by phase-inversion method and in situ reduction[J]. International Journal of Hydrogen Energy, 2016, 41(25): 10935-10941.
|
28 |
ZHAO K, KIM B H, XU Q, et al. Performance improvement of inert-substrate-supported tubular single cells via microstructure modification[J]. Journal of Power Sources, 2015, 274: 799-805.
|
29 |
ZHANG X B, JIN Y M, LI D, et al. A review on recent advances in micro-tubular solid oxide fuel cells[J]. Journal of Power Sources, 2021, 506: doi: 10.1016/j.jpowsour.2021.230135.
|
30 |
TIMURKUTLUK C, TIMURKUTLUK B, KAPLAN Y. Experimental optimization of the fabrication parameters for anode-supported micro-tubular solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2020, 45(43): 23294-23309.
|
31 |
EMLEY B, YAO Y. Controlling porosity by freeze casting in tubular solid oxide fuel cell anode supports[J]. ECS Meeting Abstracts, 2020, (40): 2579.
|
32 |
REN C, ZHANG Y X, XU Q, et al. Effect of non-solvent from the phase inversion method on the morphology and performance of the anode supported microtubular solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6926-6933.
|
33 |
AHMAD S H, JAMIL S M, OTHMAN M H D, et al. Co-extruded dual-layer hollow fiber with different electrolyte structure for a high temperature micro-tubular solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2017, 42(14): 9116-9124.
|
34 |
PANTHI D, HEDAYAT N, WOODSON T, et al. Tubular solid oxide fuel cells fabricated by a novel freeze casting method[J]. Journal of the American Ceramic Society, 2020, 103(2): 878-888.
|
35 |
KHERAD R, DODANGEI S, MOUSSAVI S H, et al. Characterization of anode supported micro-tubular solid oxide fuel cells prepared by successive non-aqueous electrophoretic deposition[J]. Journal of Electroceramics, 2022, 48(1): 1-7.
|
36 |
MU S L, ZHAO Z Y, HUANG H, et al. Advanced manufacturing of intermediate-temperature protonic ceramic electrochemical cells[J]. The Electrochemical Society Interface, 2020, 29(4): 67-73.
|
37 |
郑丽娜, 王文中, 贾凯杰, 等. 3D打印技术在固体氧化物燃料电池领域的研究进展[J]. 储能科学与技术, 2021, 10(6): 1952-1962.
|
|
ZHENG L N, WANG W Z, JIA K J, et al. Three-dimensional printing technologies in the field of solid oxide fuel cells[J]. Energy Storage Science and Technology, 2021, 10(6): 1952-1962.
|
38 |
MU S L, HONG Y Z, HUANG H, et al. A novel laser 3D printing method for the advanced manufacturing of protonic ceramics[J]. Membranes, 2020, 10(5): 98.
|
39 |
TAGHIKHANI K, DUBOIS A, BERGER J R, et al. Modeling electro-chemo-mechanical behaviors within the dense BaZr0.8Y0.2O3- δ protonic-ceramic membrane in a long tubular electrochemical cell[J]. Membranes, 2021, 11(6): 378.
|
40 |
CAO D, ZHOU M Y, YAN X M, et al. High performance low-temperature tubular protonic ceramic fuel cells based on Barium cerate-zirconate electrolyte[J]. Electrochemistry Communications, 2021, 125: doi: 10.1016/j.elecom.2021.106986.
|
41 |
MA M J, YANG X X, QIAO J S, et al. Progress and challenges of carbon-fueled solid oxide fuel cells anode[J]. Journal of Energy Chemistry, 2021, 56: 209-222.
|
42 |
练文超, 雷励斌, 梁波, 等. 质子导体固体氧化物电化学装置中氨的利用与合成[J]. 储能科学与技术, 2021, 10(6): 1998-2007.
|
|
LIAN W C, LEI L B, LIANG B, et al. Utilization and synthesis of ammonia in proton-conducting solid oxide electrochemical devices[J]. Energy Storage Science and Technology, 2021, 10(6): 1998-2007.
|