储能科学与技术 ›› 2023, Vol. 12 ›› Issue (7): 2141-2154.doi: 10.19799/j.cnki.2095-4239.2023.0301

• 储能锂离子电池系统关键技术专刊 • 上一篇    下一篇

锂离子电池多物理场多尺度变形理论模型与计算方法

吴宜琨(), 何杰, 杨乐(), 宋维力, 陈浩森   

  1. 北京理工大学,北京 100081
  • 收稿日期:2023-05-04 修回日期:2023-05-25 出版日期:2023-07-05 发布日期:2023-07-25
  • 通讯作者: 杨乐 E-mail:wyk910524@163.com;leyang@bit.edu.cn
  • 作者简介:吴宜琨(1991—),男,博士研究生,研究方向为锂离子电池多物理场耦合跨尺度理论模型与计算方法,E-mail:wyk910524@163.com
  • 基金资助:
    国家重点研发计划(2022YFB3305400)

Multiscale and multiphysics theoretical model and computational method for lithium-ion batteries

Yikun WU(), Jie HE, Le YANG(), Weili SONG, Haosen CHEN   

  1. Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
  • Received:2023-05-04 Revised:2023-05-25 Online:2023-07-05 Published:2023-07-25
  • Contact: Le YANG E-mail:wyk910524@163.com;leyang@bit.edu.cn

摘要:

锂离子电池具有高能量密度、高工作电压、低自放电率以及可快充等优点,广泛应用于国防工业与人类生活各个领域。经过国内电池行业的努力,中国已经毫无疑问成为能源电池大国,然而由于能源电池计算模型与设计软件的缺乏,使得在新型电池的研发中仍以经验为主,亟需定量化的理论模型与算法实现。锂离子电池系统具有复杂的多物理场耦合特性以及时间、空间上的多尺度特性,以新一代高能量密度锂离子电池为例,由于电极活性颗粒膨胀变形带来的多场耦合机理不清、电池系统的时空跨尺度关联不易、不具备设计软件等难题使得该类材料较难实现大规模应用。本文聚焦力/电/电化学耦合下锂离子电池颗粒/极片/单体跨尺度变形理论模型与算法实现,系统地综述了:①锂离子电池多场耦合变形理论研究现状;②锂离子电池多场耦合数值模拟研究现状;③锂离子电池跨尺度数值仿真研究现状;④锂离子电池界面力化耦合理论研究现状。

关键词: 锂离子电池, 多场耦合, 多尺度, 计算仿真方法

Abstract:

Lithium-ion batteries have the advantages of high energy density, high working voltage, low self-discharge rate, and fast charging. They are widely used in various fields related to national defense industry and human life. After considerable efforts in developing the domestic battery industry, China has built a strong foundation in battery research and production. However, owing to the lack of battery computing models and design software, the design of novel batteries is still based on experience. Thus, relevant quantitative theoretical models and algorithm implementations are urgently needed. Lithium-ion battery systems have complex multiphysics coupling characteristics and multiscale characteristics in time and space. Unclear multifield coupling mechanisms related to lithiation and delithiation, the hard scale transitions in time and space, and the lack of design software are the main factors preventing the commercialization of novel materials in next-generation high-energy-density batteries. Herein, we propose a multiscale theoretical model and algorithm realization using the coupling of the electrochemomechanical behaviors of the batteries, including electrochemomechanical coupling theory of electrodes in lithium-ion batteries, finite element realization of multifield coupling behavior at various scales, concurrent and hierarchical multiscale theoretical and numerical models of electrodes, and electrochemomechanical behavior of the interface between the electrode and electrolyte.

Key words: lithium ion battery, multi-physics coupling, multi-scale, computational method

中图分类号: