储能科学与技术 ›› 2023, Vol. 12 ›› Issue (7): 2141-2154.doi: 10.19799/j.cnki.2095-4239.2023.0301
收稿日期:
2023-05-04
修回日期:
2023-05-25
出版日期:
2023-07-05
发布日期:
2023-07-25
通讯作者:
杨乐
E-mail:wyk910524@163.com;leyang@bit.edu.cn
作者简介:
吴宜琨(1991—),男,博士研究生,研究方向为锂离子电池多物理场耦合跨尺度理论模型与计算方法,E-mail:wyk910524@163.com;
基金资助:
Yikun WU(), Jie HE, Le YANG(), Weili SONG, Haosen CHEN
Received:
2023-05-04
Revised:
2023-05-25
Online:
2023-07-05
Published:
2023-07-25
Contact:
Le YANG
E-mail:wyk910524@163.com;leyang@bit.edu.cn
摘要:
锂离子电池具有高能量密度、高工作电压、低自放电率以及可快充等优点,广泛应用于国防工业与人类生活各个领域。经过国内电池行业的努力,中国已经毫无疑问成为能源电池大国,然而由于能源电池计算模型与设计软件的缺乏,使得在新型电池的研发中仍以经验为主,亟需定量化的理论模型与算法实现。锂离子电池系统具有复杂的多物理场耦合特性以及时间、空间上的多尺度特性,以新一代高能量密度锂离子电池为例,由于电极活性颗粒膨胀变形带来的多场耦合机理不清、电池系统的时空跨尺度关联不易、不具备设计软件等难题使得该类材料较难实现大规模应用。本文聚焦力/电/电化学耦合下锂离子电池颗粒/极片/单体跨尺度变形理论模型与算法实现,系统地综述了:①锂离子电池多场耦合变形理论研究现状;②锂离子电池多场耦合数值模拟研究现状;③锂离子电池跨尺度数值仿真研究现状;④锂离子电池界面力化耦合理论研究现状。
中图分类号:
吴宜琨, 何杰, 杨乐, 宋维力, 陈浩森. 锂离子电池多物理场多尺度变形理论模型与计算方法[J]. 储能科学与技术, 2023, 12(7): 2141-2154.
Yikun WU, Jie HE, Le YANG, Weili SONG, Haosen CHEN. Multiscale and multiphysics theoretical model and computational method for lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2141-2154.
1 | RIEGER B, SCHLUETER S, ERHARD S V, et al. Multi-scale investigation of thickness changes in a commercial pouch type lithium-ion battery[J]. Journal of Energy Storage, 2016, 6: 213-221. |
2 | GRIMSMANN F, BRAUCHLE F, GERBERT T, et al. Hysteresis and current dependence of the thickness change of lithium-ion cells with graphite anode[J]. Journal of Energy Storage, 2017, 12: 132-137. |
3 | SAUERTEIG D, IVANOV S, REINSHAGEN H, et al. Reversible and irreversible dilation of lithium-ion battery electrodes investigated by in situ dilatometry[J]. Journal of Power Sources, 2017, 342: 939-946. |
4 | PRADO A Y R, RODRIGUES M T F, TRASK S E, et al. Electrochemical dilatometry of Si-bearing electrodes: Dimensional changes and experiment design[J]. Journal of the Electrochemical Society, 2020, 167(16): 160551. |
5 | PRUSSIN S. Generation and distribution of dislocations by solute diffusion[J]. Journal of Applied Physics, 1961, 32(10): 1876-1881. |
6 | CHENG Y T, VERBRUGGE M W. Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation[J]. Journal of Power Sources, 2009, 190(2): 453-460. |
7 | DESHPANDE R, CHENG Y T, VERBRUGGE M W, et al. Diffusion induced stresses and strain energy in a phase-transforming spherical electrode particle[J]. Journal of the Electrochemical Society, 2011, 158(6): A718-A724. |
8 | LI J, FANG Q H, LIU F, et al. Analytical modeling of dislocation effect on diffusion induced stress in a cylindrical lithium ion battery electrode[J]. Journal of Power Sources, 2014, 272: 121-127. |
9 | ZHANG X Y, HAO F, CHEN H S, et al. Diffusion-induced stresses in transversely isotropic cylindrical electrodes of lithium-ion batteries[J]. Journal of the Electrochemical Society, 2014, 161(14): A2243-A2249. |
10 | LI J C M. Physical chemistry of some microstructural phenomena[J]. Metallurgical Transactions A, 1978, 9(10): 1353-1380. |
11 | LARCHÉ F, CAHN J W. A linear theory of thermochemical equilibrium of solids under stress[J]. Acta Metallurgica, 1973, 21(8): 1051-1063. |
12 | LARCHÉ F, CAHN J W. A nonlinear theory of thermochemical equilibrium of solids under stress[J]. Acta Metallurgica, 1978, 26(1): 53-60. |
13 | LARCHÉ F C, CAHN J W. Overview no. 41 The interactions of composition and stress in crystalline solids[J]. Acta Metallurgica, 1985, 33(3): 331-357. |
14 | CHRISTENSEN J, NEWMAN J. Stress generation and fracture in lithium insertion materials[J]. Journal of Solid State Electrochemistry, 2006, 10(5): 293-319. |
15 | SETHURAMAN V A, CHON M J, SHIMSHAK M, et al. In situ measurement of biaxial modulus of Si anode for Li-ion batteries[J]. Electrochemistry Communications, 2010, 12(11): 1614-1617. |
16 | SETHURAMAN V A, CHON M J, SHIMSHAK M, et al. In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation[J]. Journal of Power Sources, 2010, 195(15): 5062-5066. |
17 | SETHURAMAN V A, SRINIVASAN V, BOWER A F, et al. In situ measurements of stress-potential coupling in lithiated silicon[J]. Journal of the Electrochemical Society, 2010, 157(11): A1253. |
18 | LIU X H, ZHENG H, ZHONG L, et al. Anisotropic swelling and fracture of silicon nanowires during lithiation[J]. Nano Letters, 2011, 11(8): 3312-3318. |
19 | KUSHIMA A, HUANG J Y, LI J. Quantitative fracture strength and plasticity measurements of lithiated silicon nanowires by in situ TEM tensile experiments[J]. ACS Nano, 2012, 6(11): 9425-9432. |
20 | ZHAO K J, LI Y G, BRASSART L. Pressure-sensitive plasticity of lithiated silicon in Li-ion batteries[J]. Acta Mechanica Sinica, 2013, 29(3): 379-387. |
21 | YANG H, FAN F F, LIANG W T, et al. A chemo-mechanical model of lithiation in silicon[J]. Journal of the Mechanics and Physics of Solids, 2014, 70: 349-361. |
22 | ZHAO K J, PHARR M, VLASSAK J J, et al. Inelastic hosts as electrodes for high-capacity lithium-ion batteries[J]. Journal of Applied Physics, 2011, 109(1): 016110. |
23 | ZHAO K J, PHARR M, CAI S Q, et al. Large plastic deformation in high-capacity lithium-ion batteries caused by charge and discharge[J]. Journal of the American Ceramic Society, 2011, 94: s226-s235. |
24 | CUI Z W, GAO F, QU J M. A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries[J]. Journal of the Mechanics and Physics of Solids, 2012, 60(7): 1280-1295. |
25 | CUI Z W, GAO F, QU J M. Interface-reaction controlled diffusion in binary solids with applications to lithiation of silicon in lithium-ion batteries[J]. Journal of the Mechanics and Physics of Solids, 2013, 61(2): 293-310. |
26 | CHEN L, FAN F, HONG L, et al. A phase-field model coupled with large elasto-plastic deformation: Application to lithiated silicon electrodes[J]. Journal of the Electrochemical Society, 2014, 161(11): F3164-F3172. |
27 | DI LEO C V, REJOVITZKY E, ANAND L. A Cahn-Hilliard-type phase-field theory for species diffusion coupled with large elastic deformations: Application to phase-separating Li-ion electrode materials[J]. Journal of the Mechanics and Physics of Solids, 2014, 70: 1-29. |
28 | DAL H, MIEHE C. Computational electro-chemo-mechanics of lithium-ion battery electrodes at finite strains[J]. Computational Mechanics, 2015, 55(2): 303-325. |
29 | DI LEO C V, REJOVITZKY E, ANAND L. Diffusion-deformation theory for amorphous silicon anodes: The role of plastic deformation on electrochemical performance[J]. International Journal of Solids and Structures, 2015, 67: 283-296. |
30 | ZHANG S L. Chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries[J]. Npj Computational Materials, 2017, 3(1): 1-11. |
31 | WEN J C, WEI Y J, CHENG Y T. Stress evolution in elastic-plastic electrodes during electrochemical processes: A numerical method and its applications[J]. Journal of the Mechanics and Physics of Solids, 2018, 116: 403-415. |
32 | LEE E H. Elastic-plastic deformation at finite strains[J]. Journal of Applied Mechanics, 1969, 36(1): 1-6. |
33 | WU C H. The role of Eshelby stress in composition-generated and stress-assisted diffusion[J]. Journal of the Mechanics and Physics of Solids, 2001, 49(8): 1771-1794. |
34 | HU B, MA Z S, LEI W X, et al. A chemo-mechanical model coupled with thermal effect on the hollow core-shell electrodes in lithium-ion batteries[J]. Theoretical and Applied Mechanics Letters, 2017, 7(4): 199-206. |
35 | LIM C, YAN B, YIN L L, et al. Simulation of diffusion-induced stress using reconstructed electrodes particle structures generated by micro/nano-CT[J]. Electrochimica Acta, 2012, 75: 279-287. |
36 | APPIAH W A, PARK J, BYUN S, et al. A coupled chemo-mechanical model to study the effects of adhesive strength on the electrochemical performance of silicon electrodes for advanced lithium ion batteries[J]. Journal of Power Sources, 2018, 407: 153-161. |
37 | 冯燕, 郑莉莉, 戴作强, 等. 锂离子电池仿真模型的进展[J]. 储能科学与技术, 2019, 8(S1): 18-22. |
FENG Y, ZHENG L L, DAI Z Q, et al. Progress in lithium ion battery simulation model[J]. Energy Storage Science and Technology, 2019, 8(S1): 18-22. | |
38 | DELUCA C M, MAUTE K, DUNN M L. Effects of electrode particle morphology on stress generation in silicon during lithium insertion[J]. Journal of Power Sources, 2011, 196(22): 9672-9681. |
39 | STEIN P, XU B X. 3D Isogeometric Analysis of intercalation-induced stresses in Li-ion battery electrode particles[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 268: 225-244. |
40 | WEN J C, WEI Y J, CHENG Y T. Examining the validity of Stoney-equation for in situ stress measurements in thin film electrodes using a large-deformation finite-element procedure[J]. Journal of Power Sources, 2018, 387: 126-134. |
41 | CHEN Y X, SANG M S, JIANG W J, et al. Fracture predictions based on a coupled chemo-mechanical model with strain gradient plasticity theory for film electrodes of Li-ion batteries[J]. Engineering Fracture Mechanics, 2021, 253: 107866. |
42 | MAGRI M, BOZ B, CABRAS L, et al. Quantitative investigation of the influence of electrode morphology in the electro-chemo-mechanical response of li-ion batteries[J]. Electrochimica Acta, 2022, 405: 139778. |
43 | ZHANG X Y, BAO Y H, CHEN J, et al. Heterogeneous effects on chemo-mechanical coupling behaviors at the single-particle level[J]. Journal of the Electrochemical Society, 2022, 169(1): 010522. |
44 | AN Y H, JIANG H Q. A finite element simulation on transient large deformation and mass diffusion in electrodes for lithium ion batteries[J]. Modelling and Simulation in Materials Science and Engineering, 2013, 21(7): 074007. |
45 | YANG L, CHEN H S, JIANG H Q, et al. Failure mechanisms of 2D silicon film anodes: in situ observations and simulations on crack evolution[J]. Chemical Communications, 2018, 54(32): 3997-4000. |
46 | LIU X H, ZHONG L, HUANG S, et al. Size-dependent fracture of silicon nanoparticles during lithiation[J]. ACS Nano, 2012, 6(2): 1522-1531. |
47 | BOWER A F, GUDURU P R. A simple finite element model of diffusion, finite deformation, plasticity and fracture in lithium ion insertion electrode materials[J]. Modelling and Simulation in Materials Science and Engineering, 2012, 20(4): 045004. |
48 | GAO Y F, CHO M, ZHOU M. Mechanical reliability of alloy-based electrode materials for rechargeable Li-ion batteries[J]. Journal of Mechanical Science and Technology, 2013, 27(5): 1205-1224. |
49 | GRITTON C, GUILKEY J, HOOPER J, et al. Using the material point method to model chemical/mechanical coupling in the deformation of a silicon anode[J]. Modelling and Simulation in Materials Science and Engineering, 2017, 25(4): 045005. |
50 | DING B, WU H, XU Z P, et al. Stress effects on lithiation in silicon[J]. Nano Energy, 2017, 38: 486-493. |
51 | SANGRÓS GIMÉNEZ C, FINKE B, SCHILDE C, et al. Numerical simulation of the behavior of lithium-ion battery electrodes during the calendaring process via the discrete element method[J]. Powder Technology, 2019, 349: 1-11. |
52 | SCHREINER D, LINDENBLATT J, GÜNTER J, et al. DEM simulations of the calendering process: parameterization of the electrode material of lithium-ion batteries[J]. Procedia CIRP, 2021, 104: 91-97. |
53 | NGANDJONG A C, LOMBARDO T, PRIMO E N, et al. Investigating electrode calendering and its impact on electrochemical performance by means of a new discrete element method model: Towards a digital twin of Li-Ion battery manufacturing[J]. Journal of Power Sources, 2021, 485: 229320. |
54 | GE R H, CUMMING D J, SMITH R M. Discrete element method (DEM) analysis of lithium ion battery electrode structures from X-ray tomography-the effect of calendering conditions[J]. Powder Technology, 2022, 403: 117366. |
55 | GOONEIE A, SCHUSCHNIGG S, HOLZER C. A review of multiscale computational methods in polymeric materials[J]. Polymers, 2017, 9(1): 16. |
56 | KIM G H, SMITH K, LEE K J, et al. Multi-domain modeling of lithium-ion batteries encompassing multi-physics in varied length scales[J]. Journal of the Electrochemical Society, 2011, 158(8): A955. |
57 | LIU B H, WANG X, CHEN H S, et al. A simultaneous multiscale and multiphysics model and numerical implementation of a core-shell model for lithium-ion full-cell batteries[J]. Journal of Applied Mechanics, 2019, 86(4): 041005. |
58 | HOFMANN T, WESTHOFF D, FEINAUER J, et al. Electro-chemo-mechanical simulation for lithium ion batteries across the scales[J]. International Journal of Solids and Structures, 2020, 184(C): 24-39. |
59 | KIM H K, CHOI J H, LEE K J. A numerical study of the effects of cell formats on the cycle life of lithium ion batteries[J]. Journal of the Electrochemical Society, 2019, 166(10): A1769-A1778. |
60 | GOLMON S, MAUTE K, DUNN M L. Numerical modeling of electrochemical-mechanical interactions in lithium polymer batteries[J]. Computers & Structures, 2009, 87(23/24): 1567-1579. |
61 | FAN G D, PAN K, STORTI G L, et al. A reduced-order multi-scale, multi-dimensional model for performance prediction of large-format Li-Ion cells[J]. Journal of the Electrochemical Society, 2017, 164(2): A252-A264. |
62 | GWAK Y, MOON J, CHO M. Multi-scale analysis of an electrochemical model including coupled diffusion, stress, and nonideal solution in a silicon thin film anode[J]. Journal of Power Sources, 2016, 307: 856-865. |
63 | XIAO X R, WU W, HUANG X S. A multi-scale approach for the stress analysis of polymeric separators in a lithium-ion battery[J]. Journal of Power Sources, 2010, 195(22): 7649-7660. |
64 | WU B, LU W. A consistently coupled multiscale mechanical-electrochemical battery model with particle interaction and its validation[J]. Journal of the Mechanics and Physics of Solids, 2019, 125: 89-111. |
65 | MICHAEL H, IACOVIELLO F, HEENAN T M M, et al. A dilatometric study of graphite electrodes during cycling with X-ray computed tomography[J]. Journal of the Electrochemical Society, 2021, 168(1): 010507. |
66 | SHEARING P R, HOWARD L E, JØRGENSEN P S, et al. Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery[J]. Electrochemistry Communications, 2010, 12(3): 374-377. |
67 | VANPEENE V, VILLANOVA J, SUURONEN J P, et al. Monitoring the morphological changes of Si-based electrodes by X-ray computed tomography: A 4D-multiscale approach[J]. Nano Energy, 2020, 74: 104848. |
68 | 冯小龙, 杨乐, 张明亮, 等. 锂离子电池内部力学与温度参量在位表征方法[J]. 储能科学与技术, 2019, 8(6): 1062-1075. |
FENG X L, YANG L, ZHANG M L, et al. Failure mechanics inner lithium ion batteries: In-situ multi-field experimental methods[J]. Energy Storage Science and Technology, 2019, 8(6): 1062-1075. | |
69 | STEPHENSON D E, WALKER B C, SKELTON C B, et al. Modeling 3D microstructure and ion transport in porous Li-ion battery electrodes[J]. Journal of the Electrochemical Society, 2011, 158(7): A781. |
70 | WILSON J R, CRONIN J S, BARNETT S A, et al. Measurement of three-dimensional microstructure in a LiCoO2 positive electrode[J]. Journal of Power Sources, 2011, 196(7): 3443-3447. |
71 | TREMBACKI B L, NOBLE D R, BRUNINI V E, et al. Mesoscale effective property simulations incorporating conductive binder[J]. Journal of the Electrochemical Society, 2017, 164(11): E3613-E3626. |
72 | EBNER M, GELDMACHER F, MARONE F, et al. X-ray tomography of porous, transition metal oxide based lithium ion battery electrodes[J]. Advanced Energy Materials, 2013, 3(7): 845-850. |
73 | ENDER M, JOOS J, CARRARO T, et al. Three-dimensional reconstruction of a composite cathode for lithium-ion cells[J]. Electrochemistry Communications, 2011, 13(2): 166-168. |
74 | WIEDEMANN A H, GOLDIN G M, BARNETT S A, et al. Effects of three-dimensional cathode microstructure on the performance of lithium-ion battery cathodes[J]. Electrochimica Acta, 2013, 88: 580-588. |
75 | WIESER C, PRILL T, SCHLADITZ K. Multiscale simulation process and application to additives in porous composite battery electrodes[J]. Journal of Power Sources, 2015, 277: 64-75. |
76 | 陈玉丽, 马勇, 潘飞, 等. 多尺度复合材料力学研究进展[J]. 固体力学学报, 2018, 39(1): 1-68. |
CHEN Y L, MA Y, PAN F, et al. Research progress in multi-scale mechanics of composite materials[J]. Chinese Journal of Solid Mechanics, 2018, 39(1): 1-68. | |
77 | FISH J, WAGNER G J, KETEN S. Mesoscopic and multiscale modelling in materials[J]. Nature Materials, 2021, 20(6): 774-786. |
78 | MIEHE C. Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(5/6): 559-591. |
79 | ESHELBY J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1957, 241(1226): 376-396. |
80 | ZHUO M Z, GRAZIOLI D, SIMONE A. Tensorial effective transport properties of Li-ion battery separators elucidated by computational multiscale modeling[J]. Electrochimica Acta, 2021, 393: 139045. |
81 | SALVADORI A, BOSCO E, GRAZIOLI D. A computational homogenization approach for Li-ion battery cells: Part 1-Formulation[J]. Journal of the Mechanics and Physics of Solids, 2014, 65: 114-137. |
82 | VAN'T HOFF J H. Etudes de dynamique chimique[M]. Frederik Muller, 1884. |
83 | BUTLER J A V. Studies in heterogeneous equilibria. Part Ⅱ.—The kinetic interpretation of the Nernst theory of electromotive force[J]. Transactions of the Faraday Society, 1924, 19(March): 729-733. |
84 | ERDEY-GRÚZ T, VOLMER M. Zur theorie der wasserstoff überspannung[J]. Zeitschrift Für Physikalische Chemie, 1930, 150A(1): 203-213. |
85 | DICKINSON E J F, WAIN A J. The Butler-Volmer equation in electrochemical theory: Origins, value, and practical application[J]. Journal of Electroanalytical Chemistry, 2020, 872: 114145. |
86 | INZELT G. Milestones of the development of kinetics of electrode reactions[J]. Journal of Solid State Electrochemistry, 2011, 15(7): 1373-1389. |
87 | LABORDA E, HENSTRIDGE M C, BATCHELOR-MCAULEY C, et al. Asymmetric Marcus-Hush theory for voltammetry[J]. Chemical Society Reviews, 2013, 42(12): 4894-4905. |
88 | SRIPAD S, KORFF D, DECALUWE S C, et al. Kinetics of lithium electrodeposition and stripping[J]. The Journal of Chemical Physics, 2020, 153(19): 194701. |
89 | KURCHIN R, VISWANATHAN V. Marcus-Hush-Chidsey kinetics at electrode-electrolyte interfaces[J]. The Journal of Chemical Physics, 2020, 153(13): 134706. |
90 | HENSTRIDGE M C, LABORDA E, REES N V, et al. Marcus-Hush-Chidsey theory of electron transfer applied to voltammetry: A review[J]. Electrochimica Acta, 2012, 84: 12-20. |
91 | FRUMKIN A. Wasserstoffüberspannung und struktur der doppelschicht[J]. Zeitschrift Für Physikalische Chemie, 1933, 164A(1): 121-133. |
92 | GUTMAN E M. Theoretical problems in solid electrocapillarity[J]. Journal of Solid State Electrochemistry, 2014, 18(12): 3217-3237. |
93 | MARCUS R A. Electrostatic free energy and other properties of states having nonequilibrium polarization. I[J]. The Journal of Chemical Physics, 1956, 24(5): 979-989. |
94 | GURNEY R W. The quantum mechanics of electrolysis[J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1931, 134(823): 137-154. |
95 | DOBLHOFF-DIER K, KOPER M T M. Modeling the Gouy-Chapman diffuse capacitance with attractive ion-surface interaction[J]. The Journal of Physical Chemistry C, 2021, 125(30): 16664-16673. |
96 | FRAGGEDAKIS D, MCELDREW M, SMITH R B, et al. Theory of coupled ion-electron transfer kinetics[J]. Electrochimica Acta, 2021, 367: 137432. |
97 | BAZANT M Z. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics[J]. Accounts of Chemical Research, 2013, 46(5): 1144-1160. |
98 | CHEONG J Y, JUNG J W, KIM C, et al. Scalable top-down synthesis of functional carbon nanosheets by aronia fruit powder for Li+ and K+ storage[J]. Electrochimica Acta, 2021, 377: 138068. |
99 | CHEN R T, REN Z F, LIANG Y, et al. Spatiotemporal imaging of charge transfer in photocatalyst particles[J]. Nature, 2022, 610(7931): 296-301. |
100 | NEWNS D M. Self-consistent model of hydrogen chemisorption[J]. Physical Review, 1969, 178(3): 1123-1135. |
101 | BOWER A F, GUDURU P R, SETHURAMAN V A. A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell[J]. Journal of the Mechanics and Physics of Solids, 2011, 59(4): 804-828. |
102 | HE J, YANG L, HUANG J, et al. Hybrid quantum-classical model of mechano-electrochemical effects on graphite-electrolyte interfaces in metal-ion batteries[J]. Extreme Mechanics Letters, 2023, 59: 101971. |
103 | HE J, YANG L, HUANG J, et al. Hybrid quantum-classical treatment of lithium ion transfer reactions at graphite-electrolyte interfaces[J]. Journal of Power Sources, 2023, 564: 232880. |
104 | GOLMON S, MAUTE K, LEE S.-H, et al. Stress generation in silicon particles during lithium insertion[J]. Applied Physics Letters, 2010, 97(3): 33111. |
105 | GANSER M, HILDEBRAND F E, KAMLAH M, et al. A finite strain electro-chemo-mechanical theory for ion transport with application to binary solid electrolytes[J]. Journal of the Mechanics and Physics of Solids, 2019, 125: 681-713. |
106 | BRASSART L, STAINIER L. Effective transient behaviour of heterogeneous media in diffusion problems with a large contrast in the phase diffusivities[J]. Journal of the Mechanics and Physics of Solids, 2019, 124: 366-391. |
[1] | 张青松, 包防卫, 牛江昊. 环境压力对锂电池热失控产气及爆炸风险的影响[J]. 储能科学与技术, 2023, 12(7): 2263-2270. |
[2] | 陈智伟, 张维戈, 张珺玮, 张言茹. 基于视觉特征的动力电池组综合健康评估及分筛方法[J]. 储能科学与技术, 2023, 12(7): 2211-2219. |
[3] | 张宇波, 王有元, 黄洞宁, 王子懿, 陈伟根. 面向变工况条件的锂离子电池寿命退化预测方法[J]. 储能科学与技术, 2023, 12(7): 2238-2245. |
[4] | 徐冲, 徐宁, 蒋志敏, 李中凯, 胡洋, 严红, 马国强. 锂离子电池产气机制及基于电解液的抑制策略[J]. 储能科学与技术, 2023, 12(7): 2119-2133. |
[5] | 陈钦佩, 王学辉, 米文忠. 电动汽车锂离子电池系统热失控气体毒害及爆炸特性研究[J]. 储能科学与技术, 2023, 12(7): 2256-2262. |
[6] | 昝文达, 张睿, 丁飞. 锂离子电池电化学模型发展与应用[J]. 储能科学与技术, 2023, 12(7): 2302-2318. |
[7] | 管鸿盛, 钱诚, 徐炳辉, 孙博, 任羿. 融合自注意力机制与门控循环单元网络的宽工况锂离子电池SOC估计[J]. 储能科学与技术, 2023, 12(7): 2229-2237. |
[8] | 范茂松, 耿萌萌, 赵光金, 杨凯, 王放放, 刘皓. 基于多频点阻抗的梯次利用电池分选技术研究[J]. 储能科学与技术, 2023, 12(7): 2202-2210. |
[9] | 李晋, 王青松, 孔得朋, 王晓冬, 俞振华, 乐艳飞, 黄鑫炎, 胡振恺, 吴候福, 方华斌, 曹伟, 张少禹, 卓萍, 陈晔, 李紫婷, 梅文昕, 张越, 赵丽香, 唐亮, 黄宗侯, 陈篪, 刘彦辉, 储玉喜, 许晓元, 张晋, 李贻恺, 冯蓉, 杨标, 户波, 杨晓滢. 锂离子电池储能安全评价研究进展[J]. 储能科学与技术, 2023, 12(7): 2282-2301. |
[10] | 张佳怡, 翁素婷, 王兆翔, 王雪锋. 石墨负极界面SEI膜与锂离子电池热失控[J]. 储能科学与技术, 2023, 12(7): 2105-2118. |
[11] | 郝增辉, 刘训良, 孟缘, 孟楠, 温治. 电极界面微观结构对固态锂离子电池性能的影响[J]. 储能科学与技术, 2023, 12(7): 2095-2104. |
[12] | 刘书琴, 王小燕, 张振东, 段振霞. 锂离子电池组液冷式热管理系统的设计及优化[J]. 储能科学与技术, 2023, 12(7): 2155-2165. |
[13] | 陈育新, 杨家沐, 练成, 刘洪来. 基于相场模型的锂电池电极浆料稳定涂布窗口分析[J]. 储能科学与技术, 2023, 12(7): 2185-2193. |
[14] | 杲齐新, 赵景腾, 李国兴. 锂离子电池快速充电研究进展[J]. 储能科学与技术, 2023, 12(7): 2166-2184. |
[15] | 申锡江, 段强领, 秦鹏, 王青松, 孙金华. 三元锂离子电池组热失控阻隔及其传热特性实验研究[J]. 储能科学与技术, 2023, 12(6): 1862-1871. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||