1 |
Hydrogen Council. Hydrogen for net-zero[R]. McKinsey&Company, 2021: 56.
|
2 |
EAMES I, AUSTIN M, WOJCIK A. Injection of gaseous hydrogen into a natural gas pipeline[J]. International Journal of Hydrogen Energy, 2022, 47(61): 25745-25754.
|
3 |
LIU J X, TENG L, LIU B, et al. Analysis of hydrogen gas injection at various compositions in an existing natural gas pipeline[J]. Frontiers in Energy Research, 2021, 9: 685079.
|
4 |
GHAVAM S, VAHDATI M, GRANT WILSON I A, et al. Sustainable ammonia production processes[J]. Frontiers in Energy Research, 2021, 9: 580808.
|
5 |
XU Z, DONG W P, YANG K, et al. Development of efficient hydrogen refueling station by process optimization and control[J]. International Journal of Hydrogen Energy, 2022, 47(56): 23721-23730.
|
6 |
KELLY N A, GIBSON T L, OUWERKERK D B. Generation of high-pressure hydrogen for fuel cell electric vehicles using photovoltaic-powered water electrolysis[J]. International Journal of Hydrogen Energy, 2011, 36(24): 15803-15825.
|
7 |
KELLY N A, GIBSON T L, OUWERKERK D B. A solar-powered, high-efficiency hydrogen fueling system using high-pressure electrolysis of water: Design and initial results[J]. International Journal of Hydrogen Energy, 2008, 33(11): 2747-2764.
|
8 |
HANCKE R, HOLM T, ULLEBERG Ø. The case for high-pressure PEM water electrolysis[J]. Energy Conversion and Management, 2022, 261: 115642.
|
9 |
SUERMANN M, KIUPEL T, SCHMIDT T J, et al. Electrochemical hydrogen compression: Efficient pressurization concept derived from an energetic evaluation[J]. Journal of the Electrochemical Society, 2017, 164(12): F1187-F1195.
|
10 |
LEE B, HEO J, KIM S, et al. Economic feasibility studies of high pressure PEM water electrolysis for distributed H2 refueling stations[J]. Energy Conversion and Management, 2018, 162: 139-144.
|
11 |
CORREA G, MAROCCO P, MUÑOZ P, et al. Pressurized PEM water electrolysis: Dynamic modelling focusing on the cathode side[J]. International Journal of Hydrogen Energy, 2022, 47(7): 4315-4327.
|
12 |
LAGADEC M F, GRIMAUD A. Water electrolysers with closed and open electrochemical systems[J]. Nature Materials, 2020, 19: 1140-1150.
|
13 |
VOGT H. The quantities affecting the bubble coverage of gas-evolving electrodes[J]. Electrochimica Acta, 2017, 235: 495-499.
|
14 |
ABDELGHANI-IDRISSI S, DUBOUIS N, GRIMAUD A, et al. Effect of electrolyte flow on a gas evolution electrode[J]. Scientific Reports, 2021, 11: 4677.
|
15 |
SUERMANN M, SCHMIDT T J, BÜCHI F N. Cell performance determining parameters in high pressure water electrolysis[J]. Electrochimica Acta, 2016, 211: 989-997.
|
16 |
BAKKER M M, VERMAAS D A. Gas bubble removal in alkaline water electrolysis with utilization of pressure swings[J]. Electrochimica Acta, 2019, 319: 148-157.
|
17 |
HANKE-RAUSCHENBACH R, BENSMANN B, MILLET P. Hydrogen production using high-pressure electrolyzers[M]//Compendium of Hydrogen Energy. Amsterdam: Elsevier, 2015: 179-224.
|
18 |
JANG D, CHO H S, KANG S. Numerical modeling and analysis of the effect of pressure on the performance of an alkaline water electrolysis system[J]. Applied Energy, 2021, 287: 116554.
|
19 |
SUERMANN M, PĂTRU A, SCHMIDT T J, et al. High pressure polymer electrolyte water electrolysis: Test bench development and electrochemical analysis[J]. International Journal of Hydrogen Energy, 2017, 42(17): 12076-12086.
|
20 |
JANSSEN H, BRINGMANN J C, EMONTS B, et al. Safety-related studies on hydrogen production in high-pressure electrolysers[J]. International Journal of Hydrogen Energy, 2004, 29(7): 759-770.
|
21 |
SCHALENBACH M, CARMO M, FRITZ D L, et al. Pressurized PEM water electrolysis: Efficiency and gas crossover[J]. International Journal of Hydrogen Energy, 2013, 38(35): 14921-14933.
|
22 |
SCHALENBACH M, ZERADJANIN A R, KASIAN O, et al. A perspective on low-temperature water electrolysis-challenges in alkaline and acidic technology[J]. International Journal of Electrochemical Science, 2018, 13(2): 1173-1226.
|
23 |
GRIGORIEV S A, MILLET P, KOROBTSEV S V, et al. Hydrogen safety aspects related to high-pressure polymer electrolyte membrane water electrolysis[J]. International Journal of Hydrogen Energy, 2009, 34(14): 5986-5991.
|
24 |
KULESHOV N V, KULESHOV V N, DOVBYSH S A, et al. Development and performances of a 0.5kW high-pressure alkaline water electrolyser[J]. International Journal of Hydrogen Energy, 2019, 44(56): 29441-29449.
|
25 |
ISHIKAWA H, HARYU E, KAWASAKI N, et al. Development of 70 MPa differential-pressure water electrolysis stack[J]. Honda R&D Technical Review, 2016, 28(1): 86-93.
|
26 |
KAWASAKI N, HARYU E, ISHIKAWA H, et al. Study of seal structure of high-differential-pressure water electrolysis cell[J]. Honda R&D Technical Review, 2013, 25(2): 137-144.
|
27 |
HARYU E, NAKAZAWA K, TARUYA K, et al. Mechanical structure and performance evaluation of high differential pressure water electrolysis cell[J]. Honda R&D Technical Review, 2011, 23(2): 97-105.
|
28 |
SALEHMIN M N I, HUSAINI T, GOH J, et al. High-pressure PEM water electrolyser: A review on challenges and mitigation strategies towards green and low-cost hydrogen production[J]. Energy Conversion and Management, 2022, 268: 115985.
|
29 |
BERNARDINI M, COMISSO N, DAVOLIO G, et al. Formation of nickel hydrides by hydrogen evolution in alkaline media[J]. Journal of Electroanalytical Chemistry, 1998, 442(1/2): 125-135.
|
30 |
NIKITIN V S, OSTANINA T N, RUDOI V M, et al. Features of hydrogen evolution during electrodeposition of loose deposits of copper, nickel and zinc[J]. Journal of Electroanalytical Chemistry, 2020, 870: 114230.
|
31 |
SCHRÖDER V, EMONTS B, JANSSEN H, et al. Explosion limits of hydrogen/oxygen mixtures at initial pressures up to 200 bar[J]. Chemical Engineering & Technology, 2004, 27(8): 847-851.
|
32 |
THAM M J, WALKER R D Jr, GUBBINS K E. Diffusion of oxygen and hydrogen in aqueous potassium hydroxide solutions[J]. The Journal of Physical Chemistry, 1970, 74(8): 1747-1751.
|
33 |
KHATIB F N, WILBERFORCE T, IJAODOLA O, et al. Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: A review[J]. Renewable and Sustainable Energy Reviews, 2019, 111: 1-14.
|
34 |
SCHALENBACH M, HOEFNER T, PACIOK P, et al. Gas permeation through nafion. part 1: Measurements[J]. The Journal of Physical Chemistry C, 2015, 119(45): 25145-25155.
|
35 |
GRIGORIEV S A, POREMBSKIY V I, KOROBTSEV S V, et al. High-pressure PEM water electrolysis and corresponding safety issues[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2721-2728.
|
36 |
SCHALENBACH M, STOLTEN D. High-pressure water electrolysis: Electrochemical mitigation of product gas crossover[J]. Electrochimica Acta, 2015, 156: 321-327.
|
37 |
SCHALENBACH M, LUEKE W, STOLTEN D. Hydrogen diffusivity and electrolyte permeability of the zirfon PERL separator for alkaline water electrolysis[J]. Journal of the Electrochemical Society, 2016, 163(14): F1480-F1488.
|
38 |
TRINKE P, HAUG P, BRAUNS J, et al. Hydrogen crossover in PEM and alkaline water electrolysis: Mechanisms, direct comparison and mitigation strategies[J]. Journal of the Electrochemical Society, 2018, 165(7): F502-F513.
|
39 |
MULDER M. Characterisation of membranes[M]//Basic Principles of Membrane Technology. Dordrecht: Springer, 1996: 157-209.
|
40 |
HAUG P, KOJ M, TUREK T. Influence of process conditions on gas purity in alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2017, 42(15): 9406-9418.
|