储能科学与技术 ›› 2024, Vol. 13 ›› Issue (2): 626-633.doi: 10.19799/j.cnki.2095-4239.2023.0541

• 储能系统与工程 • 上一篇    下一篇

电解水制高压氢气——技术挑战与研究进展

韩宁宁1(), 许壮2(), 何广利2   

  1. 1.国能粤电台山发电有限公司,广东 江门 529228
    2.北京低碳清洁能源研究院氢能(氨能);技术研究中心,北京 102299
  • 收稿日期:2023-08-11 修回日期:2023-08-21 出版日期:2024-02-28 发布日期:2024-03-01
  • 通讯作者: 许壮 E-mail:1141535418@qq.com;zhuang.xu.a@chnenergy.com.cn
  • 作者简介:韩宁宁(1988—),女,博士,研究方向为纳米材料与制氢技术,E-mail:1141535418@qq.com

Pressurized water electrolysis: Challenges and recent progress

Ningning HAN1(), Zhuang XU2(), Guangli HE2   

  1. 1.CHN Energy Yuedian Taishan Power Generation Co. , Ltd. , Jiangmen 529228, Guangdong, China
    2.Hydrogen and Ammonia Energy Technology R&D Center, National Institute of Clean and Low Carbon Energy, Beijing 102299, China
  • Received:2023-08-11 Revised:2023-08-21 Online:2024-02-28 Published:2024-03-01
  • Contact: Zhuang XU E-mail:1141535418@qq.com;zhuang.xu.a@chnenergy.com.cn

摘要:

利用可再生能源电解水制氢替代化石燃料用于交通和工业领域是实现碳减排的重要技术路径,电解水制取高压氢气有利于简化氢能供应链工艺从而减少压缩机等设备投入,同时,利用电化学等温压缩减小综合能耗,对于降低可再生能源制氢综合成本具有重要意义。电解水制氢压力提高导致电解槽气密性和材料耐氢蚀要求提高,工作状态下更易发生氢氧互混导致氧中氢浓度增加以及电流效率下降,面临技术挑战。本文综述了质子交换膜电解水和碱性电解水两种技术路线在制取高压氢气方面的研究进展,开发高强度、低渗漏、高电导的隔膜材料以及适应隔膜溶胀形变的耐高压密封结构是差压式质子交换膜电解水实现高性能和高可靠性的关键,研发氢氧互混管理新工艺及过程控制技术是实现碱性电解水安全制取高压氢气的关键。

关键词: 电解, 制氢, 高压, 膜, 过程控制, 安全

Abstract:

Hydrogen produced through water electrolysis using renewable energy shows promise as a substitute for fossil fuels in transportation and industrial applications, offering a pathway to reduce carbon dioxide emissions. Pressurized water electrolyzers have the potential to generate high-pressure hydrogen and reduce the demand for subsequent hydrogen compressing, which is often necessary for high-density storage and transportation to end-users. This reduction in overall operating expenses and energy consumption results from the diminished reliance on state-of-the-art mechanical compressors and theoretically higher efficiency via isothermal compression in the electrolyzer. However, the increase in hydrogen pressure introduces challenges related to gas tightness, material durability caused by hydrogen embrittlement, safety concerns, and lowered current efficiency attributed to intensified hydrogen/oxygen crossover. These issues impact the large-scale application of pressurized electrolyzers. This study reviews the research progress in high-pressure proton exchange membrane water electrolysis and alkaline water electrolysis. For proton exchange membrane electrolysis, the critical elements for achieving high-performance and durable high-pressure electrolyzers include the development of gas-tight, reinforced, and ion-conductive membranes with an adopted sealing design. Conversely, alkaline water electrolysis requires process innovation and optimization of control strategies to manage hydrogen/oxygen crossover effectively, ensuring safe and efficient high-pressure operation.

Key words: electrolysis, hydrogen production, high pressure, membrane, process control, safety

中图分类号: