储能科学与技术 ›› 2024, Vol. 13 ›› Issue (2): 702-711.doi: 10.19799/j.cnki.2095-4239.2023.0502

• 储能测试与评价 • 上一篇    下一篇

有轨电车超级电容模组液冷散热仿真分析

廖琪1(), 曹小林1(), 邓谊柏2,3, 杨耀林3, 陈挺3   

  1. 1.中南大学能源科学与工程学院,湖南 长沙 410083
    2.浙江大学电气工程学院,浙江 杭州 310027
    3.宁波中车新能源科技有限公司,浙江 宁波 315112
  • 收稿日期:2023-07-24 修回日期:2023-09-16 出版日期:2024-02-28 发布日期:2024-03-01
  • 通讯作者: 曹小林 E-mail:liaoqi0623@163.com;xlcao@csu.edu.cn
  • 作者简介:廖琪(2000—),女,硕士研究生,研究方向为储能电源热管理技术,E-mail:liaoqi0623@163.com

Heat dissipation simulation of tram supercapacitor module

Qi LIAO1(), Xiaolin CAO1(), Yibo DENG2,3, Yaolin YANG3, Ting CHEN3   

  1. 1.School of Energy Science and Engineering, Central South University, Changsha 410083, Hunan, China
    2.School of Electrical Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
    3.Ningbo CRRC New Energy Technology Co. , Ltd. , Ningbo 315112, Zhejiang, China
  • Received:2023-07-24 Revised:2023-09-16 Online:2024-02-28 Published:2024-03-01
  • Contact: Xiaolin CAO E-mail:liaoqi0623@163.com;xlcao@csu.edu.cn

摘要:

超级电容模组因其快速充放电和适应大功率需求的能力被视为有轨电车未来动力电源的发展趋势。然而,在运行和充放电过程中,超级电容模组会产生大量热量,并导致温度在短时间内迅速上升。为解决该问题,本工作提出一种采用微型通道液体冷却的热管理方式,其原理是利用液冷板微型通道内的低温流体对超级电容单体进行冷却,通过改变边界条件确保超级电容模组在不同散热工况下的工作温度始终保持在适宜的范围内。为了比较液冷板性能,本工作设计了三种液冷板微型通道的模型,并使用ANSYS仿真软件对其进行了数值模拟,建立了新型液冷板最高温度预测模型,研究了边界条件对新型液冷板性能的影响。结果表明,design-3液冷板模型具有较好的流动和散热性能,当提高冷却液入口质量流量时,可以有效降低超级电容单体的最大温差和最高温度,改善单体间的均温性。但随着冷却液入口质量流量增至0.35 kg/s后,超级电容单体最高温度降幅逐渐减小,对其散热性能改善有限,提高流量会使热管理系统能量损失增加;当提高冷却液入口温度时,超级电容单体间温差不断减小,但冷却液入口温度对单体的均温性影响不大。

关键词: 超级电容, 热管理, 液冷板, 数值模拟

Abstract:

Supercapacitor modules are considered as the future power source for trams owing to their capability to charge and discharge fast, along with the ability to meet high power requirements. However, during operation and the charging/discharging process, supercapacitor modules generate a substantial amount of heat, resulting in a rapid temperature. To address this issue, this study proposes a thermal management approach using microchannel liquid cooling. This method involves pumping low-temperature fluid within the microchannels of a liquid-cooled plate to cool down supercapacitor cells. By altering the boundary conditions, the working temperature of supercapacitor cells can be maintained within the appropriate range under different heat dissipation conditions. To compare the performance of the liquid-cooled plate, three models of microchannel liquid cooling plates were designed herein, and numerical simulations were conducted using ANSYS software. A new prediction model for the maximum temperature of the liquid-cooled plate was established, and the effects of boundary conditions on the performance of the new liquid-cooled plate were studied. The results indicate that the design-3 model of the liquid-cooled plate demonstrates good flow and heat dissipation performance. Increasing the mass flow rate of the cooling fluid effectively reduces the maximum temperature difference and the highest temperature of supercapacitor cells, thereby improving the uniform temperature distribution among the cells. However, as the mass flow rate of the cooling fluid increases to 0.35 kg/s, the reduction in the highest temperature of supercapacitor cells gradually decreases, indicating limited improvement in its heat dissipation performance. Increasing the flow rate also increases energy losses in the thermal management system. The temperature difference among supercapacitor cells continuously decreases when increasing the inlet temperature of the cooling fluid. However, the inlet temperature of the cooling fluid has minimal impact on the uniform temperature distribution among the cells.

Key words: supercapacitor, thermal management, liquid cooling plate, numerical simulation

中图分类号: