1 |
谭必蓉, 杜建华, 叶祥虎, 等. 基于模型的锂离子电池SOC估计方法综述[J]. 储能科学与技术, 2023, 12(6): 1995-2010.
|
|
TAN B R, DU J H, YE X H, et al. Overview of SOC estimation methods for lithium-ion batteries based on model[J]. Energy Storage Science and Technology, 2023, 12(6): 1995-2010.
|
2 |
刘雨洋, 王顺利, 谢滟馨, 等. 基于在线参数辨识和改进2RC-PNGV模型的锂离子电池建模与SOC估算研究[J]. 储能科学与技术, 2021, 10(6): 2312-2317.
|
|
LIU Y Y, WANG S L, XIE Y X, et al. Research on Li-ion battery modeling and SOC estimation based on online parameter identification and improved 2RC-PNGV model[J]. Energy Storage Science and Technology, 2021, 10(6): 2312-2317.
|
3 |
YANG R X, XIONG R, SHEN W X. On-board diagnosis of soft short circuit fault in lithium-ion battery packs for electric vehicles using an extended Kalman filter[J]. CSEE Journal of Power and Energy Systems, 2020, 8(1): 258-270.
|
4 |
FENG X N, PAN Y, HE X M, et al. Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm[J]. Journal of Energy Storage, 2018, 18: 26-39.
|
5 |
刘志聪, 张彦会. 锂离子电池参数辨识及荷电状态的估算[J]. 储能科学与技术, 2022, 11(11): 3613-3622.
|
|
LIU Z C, ZHANG Y H. Parameter identification and state of charge estimation of lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(11): 3613-3622.
|
6 |
WANG S L, TAKYI-ANINAKWA P, FAN Y C, et al. A novel feedback correction-adaptive Kalman filtering method for the whole-life-cycle state of charge and closed-circuit voltage prediction of lithium-ion batteries based on the second-order electrical equivalent circuit model[J]. International Journal of Electrical Power & Energy Systems, 2022, 139: 108020.
|
7 |
SHI J J, GUO H S, CHEN D W. Parameter identification method for lithium-ion batteries based on recursive least square with sliding window difference forgetting factor[J]. Journal of Energy Storage, 2021, 44: 103485.
|
8 |
SHI H T, WANG S L, WANG L P, et al. On-line adaptive asynchronous parameter identification of lumped electrical characteristic model for vehicle lithium-ion battery considering multi-time scale effects[J]. Journal of Power Sources, 2022, 517: 230725.
|
9 |
ZHOU S D, LIU X H, HUA Y, et al. Adaptive model parameter identification for lithium-ion batteries based on improved coupling hybrid adaptive particle swarm optimization- simulated annealing method[J]. Journal of Power Sources, 2021, 482: 228951.
|
10 |
LEBEL F A, MESSIER P, SARI A, et al. Lithium-ioncell equivalent circuit model identification by galvano-static intermittent titration technique[J]. Journalof Energy Storage, 2022, 54: 105303.
|
11 |
WANG S L, FERNANDEZ C, YU C M, et al. A novel charged state prediction method of the lithium ion battery packs based on the composite equivalent modeling and improved splice Kalman filtering algorithm[J]. Journal of Power Sources, 2020, 471: 228450.
|
12 |
WANG S L, TAKYI-ANINAKWA P, JIN S Y, et al. An improved feedforward-long short-term memory modeling method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature variation[J]. Energy, 2022, 254: 124224.
|
13 |
TOWLIAT M, GUO Z, CIMINI L J, et al. Multi-layered recursive least squares for time-varying system identification[J]. IEEE Transactions on Signal Processing, 2022, 70: 2280-2292.
|
14 |
DU X H, MENG J H, ZHANG Y M, et al. An information appraisal procedure: Endows reliable online parameter identification to lithium-ion battery model[J]. IEEE Transactions on Industrial Electronics, 2022, 69(6): 5889-5899.
|
15 |
刘伟, 杨耕, 孟德越, 等. 计及常用恒流工况的锂离子电池建模方法[J]. 电工技术学报, 2021, 36(24): 5186-5200.
|
|
LIU W, YANG G, MENG D Y, et al. Modeling method of lithium-ion battery considering commonly used constant current conditions[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5186-5200.
|
16 |
卫志农, 原康康, 成乐祥, 等. 基于多新息最小二乘算法的锂电池参数辨识[J]. 电力系统自动化, 2019, 43(15): 139-145.
|
|
WEI Z N, YUAN K K, CHENG L X, et al. Parameter identification of lithium-ion battery based on multi-innovation least squares algorithm[J]. Automation of Electric Power Systems, 2019, 43(15): 139-145.
|
17 |
朱瑞, 段彬, 温法政, 等. 基于分布式最小二乘法的锂离子电池建模及参数辨识[J]. 机械工程学报, 2019, 55(20): 85-93.
|
|
ZHU R, DUAN B, WEN F Z, et al. Lithium-ion battery modeling and parameter identification based on decentralized least squares method[J]. Journal of Mechanical Engineering, 2019, 55(20): 85-93.
|
18 |
SIMON H.自适应滤波器原理(第五版)[M]. 郑宝玉,等,译. 北京: 电子工业出版社. 2016: 1-253.
|
19 |
TRAN M K, MATHEW M, JANHUNEN S, et al. A comprehensive equivalent circuit model for lithium-ion batteries, incorporating the effects of state of health, state of charge, and temperature on model parameters[J]. Journal of Energy Storage, 2021, 43: 103252.
|
20 |
SIVA SURIYA NARAYANAN S, THANGAVEL S. Machine learning-based model development for battery state of charge-open circuit voltage relationship using regression techniques[J]. Journal of Energy Storage, 2022, 49: 104098.
|