储能科学与技术 ›› 2024, Vol. 13 ›› Issue (2): 712-720.doi: 10.19799/j.cnki.2095-4239.2023.0605

• 储能测试与评价 • 上一篇    下一篇

基于自适应多层RLS的锂离子电池参数辨识

段双明(), 张胜利   

  1. 现代电力系统仿真控制与绿色电能新技术教育部重点实验室(东北电力大学),吉林 吉林 132012
  • 收稿日期:2023-09-05 修回日期:2023-09-10 出版日期:2024-02-28 发布日期:2024-03-01
  • 通讯作者: 段双明 E-mail:duansm@neepu.edu.cn
  • 作者简介:段双明(1984—),男,博士,实验师,研究方向为新能源发电运行控制,E-mail:duansm@neepu.edu.cn
  • 基金资助:
    自治区重点研发任务专项项目(2022B01019-1)

Lithium-ion battery parameter identification based on adaptive multilayer RLS

Shuangming DUAN(), Shengli ZHANG   

  1. Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology, Ministry of Education(Northeast Electric Power University), Jilin 132012, Jilin, China
  • Received:2023-09-05 Revised:2023-09-10 Online:2024-02-28 Published:2024-03-01
  • Contact: Shuangming DUAN E-mail:duansm@neepu.edu.cn

摘要:

电池参数的准确辨识是电动汽车电池管理系统实现高精度状态估计的基础。针对遗忘因子递推最小二乘法(forgetting factor recursive least squares,FFRLS)辨识变化电池参数时精度不足的问题,本文提出以层数形式更新参数的自适应多层递推最小二乘(adaptive multi-layer recursive least squares,AMLRLS)电池在线参数辨识方法。AMLRLS算法以第L-1层辨识参数的电压误差作为第L层的目标值,递推分离出电压误差中的参数量,以所有层的参数量之和作为一个数据点的辨识结果,形成多层RLS结构更新参数。针对每一次辨识算法都计算至最大设置层的问题,设计层数选择器,将第一层FFRLS辨识结果的电压误差作为层数选择器的输入量,以电压误差大小自适应选择层数,减小计算量。搭建电池模型,仿真验证AMLRLS的参数跟踪能力。仿真结果表明,AMLRLS的参数误差比RLS最大降低了69%,比AFFRLS(adaptive forgetting factor recursive least squares)最大降低了46.5%。在实验验证中,AMLRLS在DST(dynamic stress test)工况下相较其他算法电压均方根误差和平均绝对误差最大降低了43.9%和32.1%,不同电流、不同温度和不同初始SOC条件下的实验结果验证了AMLRLS具有较强的适用性。最后,实验比较了各算法的计算时间,相较于未设置层数选择器的情况,AMLRLS在DST工况下计算时间缩短了37.4%,在FUDS下缩短了28.6%,减少了电池管理系统的计算负担。

关键词: 锂离子电池, 参数辨识, 最小二乘法, 等效电路模型

Abstract:

Accurate identification of battery parameters is the foundation for achieving high-precision state estimation in electric vehicle battery management systems. To address the issue of insufficient accuracy when identifying changing battery parameters using the forgetting factor recursive least square (FFRLS) method, this study proposes an adaptive multilayer recursive least squares (AMLRLS) online battery parameter identification method, which updates parameters hierarchically. The AMLRLS algorithm uses the voltage error of the identified parameters of the L-1 layer as the target value for the L-th layer. It recursively separates the parameter quantities from the voltage error and aggregates them from all layers to form the identification result for a single data point, creating a MLRLS structure. To address the problem of computing up to the maximum set layer in each identification step, a layer selector is designed. It takes the voltage error from the FFRLS identification result of the first layer as input and adaptively selects the number of layers based on the magnitude of the voltage error, reducing computational load. A battery model is constructed, and simulations are conducted to verify the parameter tracking capability of AMLRLS. Results demonstrate that AMLRLS reduces parameter errors by up to 69% compared to RLS and 46.5% compared to adaptive FFRLS. In experimental validation, AMLRLS considerably reduces the root mean square error and average absolute error of voltage by 43.9% and 32.1%, respectively, under dynamic stress test (DST) conditions compared to other algorithms. Results across different currents, temperatures, and the initial state of charge conditions validate the strong applicability of AMLRLS. Finally, the computation time of various algorithms is compared. AMLRLS reduces computation time by 37.4% under DST conditions and by 28.6% under federal urban driving schedule conditions compared to scenarios without a layer selector, thus alleviating the computational burden of the battery management system.

Key words: lithium-ion battery, parameter identification, least squares, equivalent circuit model

中图分类号: