1 |
BARRE A, DEGUILHEM B, GROLLEAU S, et al. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications[J]. Journal of Power Sources, 2013, 241: 680-689.
|
2 |
LI Y, LIU K L, FOLEY A M, et al. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109254.
|
3 |
XU J, MEI X S, WANG X, et al. A relative state of health estimation method based on wavelet analysis for lithium-ion battery cells[J]. IEEE Transactions on Industrial Electronics, 2021, 68(8): 6973-6981.
|
4 |
HU X S, XU L, LIN X K, et al. Battery lifetime prognostics[J]. Joule, 2020, 4(2): 310-346.
|
5 |
REZVANIZANIANI S M, LIU Z C, CHEN Y, et al. Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility[J]. Journal of Power Sources, 2014, 256: 110-124.
|
6 |
LIAO L X, KÖTTIG F. Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction[J]. IEEE Transactions on Reliability, 2014, 63(1): 191-207.
|
7 |
DAI H D, ZHAO G C, LIN M Q, et al. A novel estimation method for the state of health of lithium-ion battery using prior knowledge-based neural network and Markov chain[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 7706-7716.
|
8 |
SU C, CHEN H J. A review on prognostics approaches for remaining useful life of lithium-ion battery[J]. IOP Conference Series: Earth and Environmental Science, 2017, 93: 012040.
|
9 |
JIA J F, LIANG J Y, SHI Y H, et al. SOH and RUL prediction of lithium-ion batteries based on Gaussian process regression with indirect health indicators[J]. Energies, 2020, 13(2): 375.
|
10 |
熊庆, 邸振国, 汲胜昌. 锂离子电池健康状态估计及寿命预测研究进展综述[J]. 高电压技术, 2024, 50(3): 1182-1195.
|
|
XIONG Q, DI Z G, JI S C. Review on health state estimation and life prediction of lithium-ion batteries[J]. High Voltage Engineering, 2024, 50(3): 1182-1195.
|
11 |
LIN H Y, KANG L Y, XIE D, et al. Online state-of-health estimation of lithium-ion battery based on incremental capacity curve and BP neural network[J]. Batteries, 2022, 8(4): 29.
|
12 |
LI X Y, YUAN C G, WANG Z P. State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression[J]. Energy, 2020, 203: 117852.
|
13 |
LI H, PAN D H, PHILIP CHEN C L. Intelligent prognostics for battery health monitoring using the mean entropy and relevance vector machine[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2014, 44(7): 851-862.
|
14 |
王瑞洁, 惠周利, 杨明. 基于间接健康指标的高斯过程回归对锂电池SOH预测[J]. 储能科学与技术, 2023, 12(2): 560-569.
|
|
WANG R J, HUI Z L, YANG M. Gaussian process regression based on indirect health indicators for SOH estimation of lithium battery[J]. Energy Storage Science and Technology, 2023, 12(2): 560-569.
|
15 |
戴彦文, 于艾清. 基于健康特征参数的CNN-LSTM&GRU组合锂电池SOH估计[J]. 储能科学与技术, 2022, 11(5): 1641-1649.
|
|
DAI Y W, YU A Q. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation[J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649.
|
16 |
吴忠强, 胡晓宇, 马博岩, 等. 基于PF-LSTM的锂电池剩余使用寿命预测[J]. 计量学报, 2023, 44(6): 939-947.
|
|
WU Z Q, HU X Y, MA B Y, et al. Prediction of the remaining useful life of lithium-ion batteries based on PF-LSTM[J]. Acta Metrologica Sinica, 2023, 44(6): 939-947.
|
17 |
ZHANG L, LI K, DU D J, et al. A sparse least squares support vector machine used for SOC estimation of Li-ion Batteries[J]. IFAC-PapersOnLine, 2019, 52(11): 256-261.
|
18 |
CHEN T, MORRIS J, MARTIN E. Gaussian process regression for multivariate spectroscopic calibration[J]. Chemometrics and Intelligent Laboratory Systems, 2007, 87(1): 59-71.
|
19 |
GOEBEL K, SAHA B, SAXENA A, et al. Prognostics in battery health management[J]. IEEE Instrumentation & Measurement Magazine, 2008, 11(4): 33-40.
|
20 |
钱成. 基于改进粒子滤波的锂电池剩余寿命预测及健康状态估计[D]. 西安: 西安建筑科技大学, 2022.
|
|
QIAN C. Residual life prediction and health state estimation of lithium battery based on improved particle filter[D]. Xi'an: Xi'an University of Architecture and Technology, 2022.
|
21 |
MIRJALILI S. The ant lion optimizer[J]. Advances in Engineering Software, 2015, 83(C): 80-98.
|
22 |
张韬, 王阳, 王言子, 等. 蜻蜓算法优化的高斯过程回归对锂电池健康状态预测[J/OL]. 重庆理工大学学报(自然科学), 2023: 1-9. (2023-08-25). https://kns.cnki.net/kcms/detail/50.1205.T.20230824.1614.002.html.
|
|
ZHANG T, WANG Y, WANG Y Z, et al. Dragonfly algorithm optimized Gaussian process regression for lithium battery health state prediction[J/OL]. Journal of Chongqing University of Technology (Natural Science), 2023: 1-9. (2023-08-25). https://kns.cnki.net/kcms/detail/50.1205.T.20230824.1614.002.html.
|
23 |
李放, 闵永军, 王琛, 等. 基于充电过程的锂电池SOH估计和RUL预测[J]. 储能科学与技术, 2022, 11(10): 3316-3327.
|
|
LI F, MIN Y J, WANG C, et al. State of health estimation and remaining useful life predication of lithium batteries using charging process[J]. Energy Storage Science and Technology, 2022, 11(10): 3316-3327.
|
24 |
郑青根, 杨祥国, 刘冬, 等. 改进灰狼优化最小二乘支持向量机的锂电池剩余寿命预测[J/OL]. 重庆大学学报, 2023: 1-13. (2023-04-19). https://kns.cnki.net/kcms/detail/50.1044.n.20230418.1737.002.html.
|
|
ZHENG Q G, YANG X G, LIU D, et al. Lithium battery remaining life prediction method based on improved grey Wolf optimization least squares support vector machine[J/OL]. Journal of Chongqing University, 2023: 1-13. (2023-04-19). https://kns.cnki.net/kcms/detail/50.1044.n.20230418.1737.002.html.
|