储能科学与技术 ›› 2024, Vol. 13 ›› Issue (5): 1699-1706.doi: 10.19799/j.cnki.2095-4239.2023.0954

• 储能测试与评价 • 上一篇    下一篇

锂电池极片辊压过程力学行为与结构

谢欣兵1(), 杨凯悦1, 杜晓钟1,2()   

  1. 1.太原科技大学机械工程学院
    2.太原科技大学能源与材料工程学院,山西 太原 030024
  • 收稿日期:2023-12-27 修回日期:2024-01-11 出版日期:2024-05-28 发布日期:2024-05-28
  • 通讯作者: 杜晓钟 E-mail:xinbing_x@126.com;xiaozhong_d@163.com
  • 作者简介:谢欣兵(1999—),女,硕士研究生,研究方向为锂离子电池极片制备工艺,E-mail:xinbing_x@126.com
  • 基金资助:
    山西省自然科学基金项目(202103021224273);山西省国家留学基金项目(2021137)

Mechanical behavior and structure of lithium-ion battery electrode calendering process

Xinbing XIE1(), Kaiyue YANG1, Xiaozhong DU1,2()   

  1. 1.School of Mechanical Engineering, Taiyuan University of Science and Technology
    2.School of Energy and Materials Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi, China
  • Received:2023-12-27 Revised:2024-01-11 Online:2024-05-28 Published:2024-05-28
  • Contact: Xiaozhong DU E-mail:xinbing_x@126.com;xiaozhong_d@163.com

摘要:

辊压是锂离子电池极片制备过程中的关键步骤,其结果将会影响电池的一致性和安全性。极片作为一种由集流体(金属)和涂层(非金属)组成的复合材料,无疑增加了辊压变形机理的复杂性。本研究采用离散元(DEM)模型表征锂电池正极片涂层部分,对极片辊压过程进行了数值模拟;制备了锂电池正极片,并完成了不同程度压下的辊压实验。辊压数值模拟结果与实验观测结果展现了较好的一致性,验证了模型的准确性,分析了整个辊压过程极片的形貌演变,揭示了辊压变形的实质,获得了辊压过程涂层与集流体结合界面处的载荷,并对界面结合处进行了深入分析。结果表明:DEM模型模拟可以获得极片微结构演化过程和真实力学行为;随着辊压压下量的不断增加,集流体所受最大应力呈线性上升趋势;涂层部分活性颗粒间紧密度明显增加是辊压变形的根本原因;部分涂层活性颗粒嵌入集流体表面,使集流体产生明显的塑性变形,并伴有应力集中现象。为进一步探索极片辊压过程提供了研究思路和有价值的见解。

关键词: 锂电池, 极片辊压, 离散元法

Abstract:

Calendering is a crucial step in the electrode preparation process for lithium-ion batteries, significantly impacting the battery's consistency and safety. Given that the electrode is a composite material comprising a current collector (metal) and a coating (nonmetal), the complexity of the calendering deformation mechanism is heightened. In this study, we employed the discrete element method (DEM) model to characterize the coating component of the cathode electrode in a lithium battery, simulating the electrode calendering process numerically. Cathode electrodes were prepared, and experiments with varying calendering degrees were conducted. The congruence between the numerical simulations and experimental outcomes validates the model's accuracy. This research delves into the electrode's morphological evolution throughout the calendering process, unveiling the fundamental nature of calendering deformation. It also quantifies the load at the interface between the coating and the current collector during calendering, providing an in-depth interface analysis. The findings indicate that the DEM model can effectively simulate the microstructural evolution and actual mechanical behavior of the electrode. As the rolling reduction increases, the maximum stress on the current collector exhibits a linear rising trend. The enhanced compactness among the active particles in the coating is identified as the primary cause of calendering deformation. Some active particles in the coating become embedded in the current collector's surface, causing noticeable plastic deformation and stress concentration. This investigation offers innovative research perspectives and valuable insights for further exploration of the electrode calendering process.

Key words: lithium-ion battery, electrode calendaring, discrete element method

中图分类号: