1 |
LIU Y T, ZHANG R H, WANG J, et al. Current and future lithium-ion battery manufacturing[J]. iScience, 2021, 24(4): 102332.
|
2 |
闫金定. 锂离子电池发展现状及其前景分析[J]. 航空学报, 2014, 35(10): 2767-2775.
|
|
YAN J D. Current status and development analysis of lithium-ion batteries[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2767-2775.
|
3 |
刘斌斌. 动力锂离子电池极片精密制造理论与实验研究[D]. 太原: 太原科技大学, 2017.LIU B B. Theoretical and experimental research on precision manufacturing of power lithium ion battery electrode[D]. Taiyuan: Taiyuan University of Science and Technology, 2017.
|
4 |
李茂源, 张云, 汪正堂, 等. 锂离子电池极片制造中的微结构演化[J]. 科学通报, 2022, 67(11): 1088-1102.
|
|
LI M Y, ZHANG Y, WANG Z T, et al. Microstructure evolutions in lithium ion battery electrode manufacturing[J]. Chinese Science Bulletin, 2022, 67(11): 1088-1102.
|
5 |
SCHMIDT D, KAMLAH M, KNOBLAUCH V. Highly densified NCM-cathodes for high energy Li-ion batteries: Microstructural evolution during densification and its influence on the performance of the electrodes[J]. Journal of Energy Storage, 2018, 17: 213-223.
|
6 |
KANG H X, LIM C, LI T Y, et al. Geometric and electrochemical characteristics of LiNi1/3Mn1/3Co1/3O2 electrode with different calendering conditions[J]. Electrochimica Acta, 2017, 232: 431-438.
|
7 |
ZHANG J P, SUN J N, HUANG H G, et al. Influence of calendering process on the structural mechanics and heat transfer characteristics of lithium-ion battery electrodes via DEM simulations[J]. Particuology, 2024, 85: 252-267.
|
8 |
SHENG Y P, FELL C R, SON Y K, et al. Effect of calendering on electrode wettability in lithium-ion batteries[J]. Frontiers in Energy Research, 2014, 2: 56.
|
9 |
徐泳, 孙其诚, 张凌, 等. 颗粒离散元法研究进展[J]. 力学进展, 2003, 33(2): 251-260.
|
|
XU Y, SUN Q C, ZHANG L, et al. Advances in discrete element methods for particulate materials[J]. Advances in Mechanics, 2003, 33(2): 251-260.
|
10 |
CUNDALL P A. A computer model for simulating progressive, large-scale movement in blocky rock system[J]. Proceedings of the international symposium on rock mechanics, 1971, 8: 129-136.
|
11 |
STRACK O D L, CUNDALL P A. The distinct element method as a tool for research in granular media[R]. Department of Civil and Mineral Engineering, University of Minnesota, 1978.
|
12 |
殷鹏飞, 杨圣奇, 高峰, 等. 不同节理模型在层状复合岩石离散元模拟中的应用[J]. 采矿与安全工程学报, 2023, 40(1): 164-173, 183.
|
|
YIN P F, YANG S Q, GAO F, et al. Application of different joint models in stratified composite rock DEM simulation[J]. Journal of Mining & Safety Engineering, 2023, 40(1): 164-173, 183.
|
13 |
刘强, 卢子兴, 杨振宇, 等. 氧化硅气凝胶粉体材料力学性能的多尺度模拟[J]. 宇航材料工艺, 2014, 44(1): 33-36.
|
|
LIU Q, LU Z X, YANG Z Y, et al. Multi-scale simulation on mechanical properties of silica aerogel powder[J]. Aerospace Materials & Technology, 2014, 44(1): 33-36.
|
14 |
刘康, 王现文, 李戬, 等. 基于DEM联用Box-Behnken响应面法优化磨煤机破碎参数[J/OL]. 矿产综合利用, 1-9. http://kns.cnki.net/kcms/detail/51.1251.TD.20230904.1609.004.html.
|
|
LIU K, WANG X W, LI J, et al. Optimization of crushing parameters of coal mill based on DEM combined with Box-Behnken response surface method[J/OL]. Multipurpose Utilization of Mineral Resources, 1-9. http://kns.cnki.net/kcms/detail/51.1251.TD.20230904.1609.004.html.
|
15 |
陈超云, 文慧卿, 梁艳争. 基于离散元法的颗粒压实特性研究[J]. 计量学报, 2023, 44(6): 917-922.
|
|
CHEN C Y, WEN H Q, LIANG Y Z. Study on compaction characteristics of particle based on discrete element method[J]. Acta Metrologica Sinica, 2023, 44(6): 917-922.
|
16 |
SANGRÓS GIMÉNEZ C, FINKE B, NOWAK C, et al. Structural and mechanical characterization of lithium-ion battery electrodes via DEM simulations[J]. Advanced Powder Technology, 2018, 29(10): 2312-2321.
|
17 |
SANGRÓS GIMÉNEZ C, FINKE B, SCHILDE C, et al. Numerical simulation of the behavior of lithium-ion battery electrodes during the calendaring process via the discrete element method[J]. Powder Technology, 2019, 349: 1-11.
|
18 |
SANGRÓS GIMÉNEZ C, SCHILDE C, FROBÖSE L, et al. Mechanical, electrical, and ionic behavior of lithium-ion battery electrodes via discrete element method simulations[J]. Energy Technology, 2020, 8(2): 1900180.
|
19 |
SCHREINER D, KLINGER A, REINHART G. Modeling of the calendering process for lithium-ion batteries with DEM simulation[J]. Procedia CIRP, 2020, 93: 149-155.
|
20 |
GE R, CUMMING D J, SMITH R M. Discrete element method (DEM) analysis of lithium ion battery electrode structures from X-ray tomography-the effect of calendering conditions[J]. Powder Technology, 2022, 403: 117366.
|
21 |
ZHANG J P, HUANG H G, SUN J N. Investigation on mechanical and microstructural evolution of lithium-ion battery electrode during the calendering process[J]. Powder Technology, 2022, 409: 117828.
|
22 |
SANGRÓS C, SCHILDE C, KWADE A. Effect of microstructure on thermal conduction within lithium-ion battery electrodes using discrete element method simulations[J]. Energy Technology, 2016, 4(12): 1611-1619.
|
23 |
STERSHIC A, SIMUNOVIC S, NANDA J. Modeling the evolution of lithium-ion particle contact distributions using a fabric tensor approach[J]. Journal of Power Sources, 2015, 297: 540-550.
|
24 |
张俊鹏, 孙静娜, 黄华贵, 等. 锂离子电池极片辊压异质微结构演化与性能相关性研究进展[J/OL]. 中国有色金属学报: 1-29[2024-01-18]. http://kns.cnki.net/kcms/detail/43.1238.tg.20231013.1140.005.html.
|
|
ZHANG J P, SUN J N, HUANG H G, et al. A review of heterogeneous microstructure and performance correlation during calendering process of electrode for LIBs[J/OL]. The Chinese Journal of Nonferrous Metals: 1-29[2024-01-18]. http://kns.cnki.net/kcms/detail/43.1238.tg.20231013.1140.005.html.
|
25 |
PEIRCE D, ASARO R J, NEEDLEMAN A. Material rate dependence and localized deformation in crystalline solids[J]. Acta Metallurgica, 1983, 31(12): 1951-1976.
|
26 |
ASARO R J, NEEDLEMAN A. Overview no. 42 Texture development and strain hardening in rate dependent polycrystals[J]. Acta Metallurgica, 1985, 33(6): 923-953.
|