1 |
YANG Z W, WANG Z, RAN P, et al. Thermodynamic analysis of a hybrid thermal-compressed air energy storage system for the integration of wind power[J]. Applied Thermal Engineering, 2014, 66(1/2): 519-527. DOI: 10.1016/j.applthermaleng.2014.02.043.
|
2 |
ZAFIRAKIS D, CHALVATZIS K J, BAIOCCHI G, et al. Modeling of financial incentives for investments in energy storage systems that promote the large-scale integration of wind energy[J]. Applied Energy, 2013, 105: 138-154. DOI: 10.1016/j.apenergy. 2012.11.073.
|
3 |
陈海生, 李泓, 徐玉杰, 等. 2023年中国储能技术研究进展[J]. 储能科学与技术, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441.
|
|
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2023[J]. Energy Storage Science and Technology, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441.
|
4 |
CHEN J, LIU W, JIANG D Y, et al. Preliminary investigation on the feasibility of a clean CAES system coupled with wind and solar energy in China[J]. Energy, 2017, 127: 462-478. DOI: 10.1016/j.energy.2017.03.088.
|
5 |
ZHANG X J, LI Y, GAO Z Y, et al. Overview of dynamic operation strategies for advanced compressed air energy storage[J]. Journal of Energy Storage, 2023, 66: 107408. DOI: 10.1016/j.est.2023.107408.
|
6 |
ALAMI A H, AOKAL K, ABED J, et al. Low pressure, modular compressed air energy storage (CAES) system for wind energy storage applications[J]. Renewable Energy, 2017, 106: 201-211. DOI: 10.1016/j.renene.2017.01.002.
|
7 |
王星, 李文, 朱阳历, 等. CAES轴流涡轮弯导叶优化设计与流动损失控制机理[J]. 储能科学与技术, 2021, 10(5): 1524-1535. DOI: 10.19799/j.cnki.2095-4239.2021.0338.
|
|
WANG X, LI W, ZHU Y L, et al. Optimal design and flow loss reduction mechanism of bowed guide vane in a CAES axial flow turbine[J]. Energy Storage Science and Technology, 2021, 10(5): 1524-1535. DOI: 10.19799/j.cnki.2095-4239.2021.0338.
|
8 |
WANG X, ZHU Y L, LI W, et al. Flow characteristics of an axial turbine with chamber and diffuser adopted in compressed air energy storage system[J]. Energy Reports, 2020, 6: 45-57. DOI: 10.1016/j.egyr.2019.12.012.
|
9 |
KOCH J M, CHOW P N, HUTCHINSON B R, et al. Experimental and computational study of a radial compressor inlet[C]// ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition. ASME. DOI: 10.1115/95-GT-082.
|
10 |
王锐, 祁大同, 王学军, 等. 离心压缩机径向吸气室内部流动的数值研究[J]. 流体机械, 2008, 36(6): 19-24, 9. DOI: 10.3969/j.issn.1005-0329.2008.06.005.
|
|
WANG R, QI D T, WANG X J, et al. Numerical study on the interior flow in the radial inlet volute for centrifugal compressor[J]. Fluid Machinery, 2008, 36(6): 19-24, 9. DOI: 10.3969/j.issn.1005-0329.2008.06.005.
|
11 |
TAN J J, QI D T, WANG R. The effects of radial inlet on the performance of variable inlet guide vanes in a centrifugal compressor stage[C]//ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASME, 2010: 1723-1732. DOI: 10.1115/GT2010-22177.
|
12 |
HAN F H, TAN J J, MAO Y J, et al. Effects of flow loss and inlet distortions caused by radial inlet on the performance of centrifugal compressor stage[C]// ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. ASME, 2016. DOI: 10.1115/AJKFluids2015-09693.
|
13 |
ANADA S, KAWAKAMI T, SHIBATA N. Development of SJ (swirl jet) turbocharger for diesel engine vehicles[C]// SAE Technical Paper Series. United States: SAE International, 1997: 490-497. DOI: 10.4271/970341.
|
14 |
PEAT K S, TORREGROSA A J, BROATCH A, et al. An investigation into the passive acoustic effect of the turbine in an automotive turbocharger[J]. Journal of Sound and Vibration, 2006, 295(1/2): 60-75. DOI: 10.1016/j.jsv.2005.11.033.
|
15 |
PAZZI S, MICHELASSI V. Analysis and design outlines of centrifugal compressor inlet volutes[C]// ASME Turbo Expo 2000: Power for Land, Sea, and Air. ASME, 2014. DOI: 10.1115/2000-GT-0464.
|
16 |
AGARWAL V K, AJAY PAUL J. Optimization of piston and ringpack design to improve the performance and emission characteristics of a gasoline engine[C]// SAE Technical Paper Series. United States: SAE International, 2013. DOI: 10.4271/2013-01-2809.
|
17 |
KIM Y, KOCH J. Design and numerical investigation of advanced radial inlet for a centrifugal compressor stage[C]// Process Industries. ASME, 2004, 47179: 127-139.DOI: 10.1115/imece2004-60538.
|
18 |
张立楠, 李宏磊, 岳国强, 等. 涡轮增压器进/排气蜗壳结构优化与性能分析[J]. 内燃机工程, 2021, 42(4): 38-46, 53. DOI: 10.13949/j.cnki.nrjgc.2021.04.006.
|
|
ZHANG L N, LI H L, YUE G Q, et al. Structural optimization and performance analysis of intake and exhaust volutes of a turbocharger[J]. Chinese Internal Combustion Engine Engineering, 2021, 42(4): 38-46, 53. DOI: 10.13949/j.cnki.nrjgc. 2021.04.006.
|
19 |
LOWSON M V. Reduction of compressor noise radiation[J]. The Journal of the Acoustical Society of America, 1968, 43(1): 37-50. DOI: 10.1121/1.1910760.
|
20 |
MELLIN R C, SOVRAN G. Controlling the tonal characteristics of the aerodynamic noise generated by fan rotors[J]. Journal of Basic Engineering, 1970, 92(1): 143-154. DOI: 10.1115/1. 3424923.
|
21 |
DUNCAN P E, DAWSON B. Reduction of interaction tones from axial flow fans by non-uniform distribution of the stator vanes[J]. Journal of Sound and Vibration, 1975, 38(3): 357-371. DOI: 10.1016/S0022-460X(75)80052-6.
|
22 |
FIAGBEDZI Y A. Reduction of blade passage tone by angle modulation[J]. Journal of Sound and Vibration, 1982, 82(1): 119-129. DOI: 10.1016/0022-460X(82)90547-8.
|
23 |
BOLTEZAR M, MESARIC M, KUHELJ A. The influence of uneven blade spacing on the SPL and noise spectra radiated from radial fans[J]. Journal of Sound and Vibration, 1998, 216(4): 697-711. DOI: 10.1006/jsvi.1998.1707.
|
24 |
JIANG B Y, WANG J, YANG X P, et al. Tonal noise reduction by unevenly spaced blades in a forward-curved-blades centrifugal fan[J]. Applied Acoustics, 2019, 146: 172-183. DOI: 10.1016/j.apacoust.2018.11.007.
|
25 |
WU Y D, PAN D H, PENG Z G, et al. Blade force model for calculating the axial noise of fans with unevenly spaced blades[J]. Applied Acoustics, 2019, 146: 429-436. DOI: 10.1016/j.apacoust. 2018.11.008.
|
26 |
CATTANEI A, MAZZOCUT ZECCHIN F, DI PASQUALI A, et al. Effect of the uneven blade spacing on the noise annoyance of axial-flow fans and side channel blowers[J]. Applied Acoustics, 2021, 177: 107924. DOI: 10.1016/j.apacoust.2021.107924.
|
27 |
何江南, 廖明夫, 刘前智. 非均匀栅距对压气机转子-静子气动干涉噪声的影响[J]. 科学技术与工程, 2007, 7(11): 2581-2583, 2624. DOI: 10.3969/j.issn.1671-1815.2007.11.028.
|
|
HE J N, LIAO M F, LIU Q Z. Effects of uneven blade spacing on rotor-stator interaction noise in an axial compressor[J]. Science Technology and Engineering, 2007, 7(11): 2581-2583, 2624. DOI: 10.3969/j.issn.1671-1815.2007.11.028.
|
28 |
邢世凯. 非均匀布置可调导叶向心涡轮性能研究[D]. 北京: 北京理工大学, 2015.
|
|
XING S K. Research on the performance of centripetal turbine with non-uniform arrangement of adjustable guide vanes [D]. Beijing: Beijing Institute of Technology, 2015.
|
29 |
MONK D J, KEY N L, FULAYTER R D. Reduction of aerodynamic forcing through introduction of stator asymmetry in axial compressors[J]. Journal of Propulsion and Power, 2016, 32(1): 134-141. DOI: 10.2514/1.b35704.
|
30 |
郑赟, 崔健, 高庆哲, 等. 导叶非均匀布局对气动激励的影响[J]. 航空动力学报, 2022, 37(11): 2627-2635. DOI: 10.13224/j.cnki.jasp.20220292.
|
|
ZHENG Y, CUI J, GAO Q Z, et al. Effects of inlet guide vanes asymmetry layouts on aerodynamic excitation[J]. Journal of Aerospace Power, 2022, 37(11): 2627-2635. DOI: 10.13224/j.cnki.jasp.20220292.
|
31 |
GUO H, XU Y J, ZHANG Y, et al. Off-design performance and operation strategy of expansion process in compressed air energy systems[J]. International Journal of Energy Research, 2019, 43(1): 475-490. DOI: 10.1002/er.4284.
|
32 |
MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 2000, 42(1): 55. DOI: 10.2307/1271432.
|