储能科学与技术 ›› 2025, Vol. 14 ›› Issue (4): 1496-1506.doi: 10.19799/j.cnki.2095-4239.2024.0866

• 储能系统与工程 • 上一篇    下一篇

基于双通道并行串联式液冷板下锂电池温升特性数值分析

刘顺新1(), 许令平1, 张建兴2, 曾光1(), 李昊阳1   

  1. 1.郑州航空工业管理学院机械工程学院,河南 郑州 450046
    2.许昌云能魔方储能技术有限 公司,河南 许昌 461000
  • 收稿日期:2024-09-14 修回日期:2024-10-14 出版日期:2025-04-28 发布日期:2025-05-20
  • 通讯作者: 曾光 E-mail:lsxcj@126.com;zengg8899@163.com
  • 作者简介:刘顺新(1978—),男,副教授,研究方向为锂电池热管理,储能系统安全与可靠性设计,E-mail: lsxcj@126.com
  • 基金资助:
    河南省科技攻关项目(222102240017);郑州航院研究生教育创新计划基金项目(2024CX85);郑州航院学科基础创新能力提升专项项目(XKZX24056)

Numerical analysis of temperature rise characteristics of lithium battery based on dual-channel parallel series liquid cooling plate

Shunxin LIU1(), Lingping XU1, Jianxing ZHANG2, Guang ZENG1(), Haoyang LI1   

  1. 1.Zhengzhou institute of aeronautical industry management Institute of Mechanical Engineering, Zhengzhou 450046, Henan, China
    2.Xuchang Yunneng Rubik's Cube Energy Storage Technology Limited Company, Xuchang 461000, Henan, China
  • Received:2024-09-14 Revised:2024-10-14 Online:2025-04-28 Published:2025-05-20
  • Contact: Guang ZENG E-mail:lsxcj@126.com;zengg8899@163.com

摘要:

在锂电池储能系统的散热方式中,液冷散热系统具有明显优势,但不同的液冷板、不同的液冷结构形式,对液冷散热系统性能有着显著的影响。为解决锂电池的热安全问题,借助ANSYS FLUENT对容量为280 Ah的锂离子电池进行数值分析,构建起基于Bernardi生热率、流体动量守恒方程和能量守恒方程的锂电池三维瞬态生热模型,模拟锂电池组高倍率工作状态下温度场的变化,研究在该状态下一种双通道并行串联式液冷板的三种不同连接方式的降温效果,分析冷却液流速、冷却液初始温度以及液冷板流道高度对锂电池组降温效果的影响,获得该液冷板的最优降温方案。结果表明,在三种连接方案中,第三种正反交替式连接方案锂电池组散热性能最佳,且使得电池组受热更均匀;基于第三种连接方案,增加冷却液流速,锂电池组的最高温度随着冷却液流速的增加,由开始阶段的快速下降转变为缓慢下降;降低冷却液进口温度,锂电池组最高温度明显下降;分析对比不同高度的冷却液流道,适当增加流道高度能有效提升液冷系统散热性能。基于本研究,在该液冷板结构作用下,适当增加冷却液流速、降低冷却液进口温度、增加液冷板流道高度能得到在该液冷板结构下的最佳降温方案。

关键词: 锂电池, 液冷板, 液冷系统, 液冷结构, 散热性能

Abstract:

Among the various cooling methods for lithium battery energy storage systems, liquid-cooled cooling systems have significant advantages. However, the performance of liquid-cooled cooling systems are significantly influenced by the type and structure of liquid-cooled plates. To address the thermal safety problem of lithium-ion batteries, a 280 Ah lithium-ion battery was numerically analyzed using ANSYS FLUENT. In addition, a three-dimensional transient heat generation model was constructed based on Bernardi's heat generation rate, fluid momentum conservation equations, and energy conservation equation to simulate the change in temperature field of lithium battery pack at high rate of operation, and to evaluate the cooling effect of three connection methods of dual-channel parallel series liquid cooling plate scheme. The effects of coolant flow rate, initial temperature of coolant and channel height of the liquid cooling plate on the cooling effect of the lithium battery pack were analyzed. The optimal cooling scheme of the liquid cooling plate was thus obtained. The results demonstrated that among the three connection schemes examined, the third scheme demonstrated the best heat dissipation performance, ensuring a uniform temperature distribution across the battery pack. Based on the third connection scheme, as the coolant flow rate increased, the maximum temperature of the lithium battery pack changed from a rapid decline in the initial stage to a slow decline. Lowering the inlet temperature of the coolant significantly decreased the maximum temperature of the lithium battery pack. By analyzing and comparing coolant channels with different heights, an appropriate increase in the channel height can effectively improve the heat dissipation performance of the liquid cooling system. Based on this study, the best cooling scheme can be achieved by increasing the coolant flow rate, reducing the coolant inlet temperature, and increasing the flow channel height of the liquid cooling plate structure.

Key words: lithium battery, liquid cooling plate, liquid cooling system, liquid-cooled structure, heat dispersion

中图分类号: