[1] |
DIOUF B, PODE R. Potential of lithium-ion batteries in renewable energy[J]. Renewable Energy, 2015, 76: 375-380. DOI: 10.1016/j.renene.2014.11.058.
|
[2] |
张贵萍, 闫筱炎, 王兵, 等. 长寿命循环的磷酸铁锂电池及材料、工艺[J]. 储能科学与技术, 2023, 12(7): 2134-2140. DOI: 10.19799/j.cnki.2095-4239.2023.0381.
|
|
ZHANG G P, YAN X Y, WANG B, et al. Long life lithium iron phosphate battery and its materials and process[J]. Energy Storage Science and Technology, 2023, 12(7): 2134-2140. DOI: 10.19799/j.cnki.2095-4239.2023.0381.
|
[3] |
PELED E, MENKIN S. Review—SEI: Past, present and future[J]. Journal of the Electrochemical Society, 2017, 164(7): A1703-A1719. DOI: 10.1149/2.1441707jes.
|
[4] |
XU K. Manipulating interphases in batteries open access[J]. National Science Review, 2017, 4(1): 19-20. DOI: 10.1093/nsr/nww043.
|
[5] |
ZHAO Q, STALIN S, ARCHER L A. Stabilizing metal battery anodes through the design of solid electrolyte interphases[J]. Joule, 2021, 5(5): 1119-1142. DOI: 10.1016/j.joule.2021.03.024.
|
[6] |
ZHANG S S. A review on electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources, 2006, 162(2): 1379-1394. DOI: 10.1016/j.jpowsour.2006.07.074.
|
[7] |
JIN Y T, KNEUSELS N H, MARBELLA L E, et al. Understanding fluoroethylene carbonate and vinylene carbonate based electrolytes for Si anodes in lithium ion batteries with NMR spectroscopy[J]. Journal of the American Chemical Society, 2018, 140(31): 9854-9867. DOI: 10.1021/jacs.8b03408.
|
[8] |
LI Y C, CAO Z, WANG Y, et al. New insight into the role of fluoro-ethylene carbonate in suppressing Li-trapping for Si anodes in lithium-ion batteries[J]. ACS Energy Letters, 2023, 8(10): 4193-4203. DOI: 10.1021/acsenergylett.3c01328.
|
[9] |
TEUFL T, PRITZL D J, HARTMANN L, et al. Implications of the thermal stability of FEC-based electrolytes for Li-ion batteries[J]. Journal of the Electrochemical Society, 2023: DOI: 10.1149/1945-7111/acbc52
|
[10] |
ZHOU X, LI P, TANG Z H, et al. FEC additive for improved SEI film and electrochemical performance of the lithium primary battery[J]. Energies, 2021, 14(22): 7467. DOI: 10.3390/en14227467.
|
[11] |
YAMAZAKI S, TATARA R, MIZUTA H, et al. Consumption of fluoroethylene carbonate electrolyte-additive at the Si-graphite negative electrode in Li and Li-ion cells[J]. The Journal of Physical Chemistry C, 2023, 127(29): 14030-14040. DOI: 10. 1021/acs.jpcc.3c00843.
|
[12] |
邓邦为, 孙大明, 万琦, 等. 锂离子电池三元正极材料电解液添加剂的研究进展[J]. 化学学报, 2018, 76(4): 30-48. DOI: 10.6023/A17110517.
|
|
DENG B W, SUN D M, WAN Q, et al. Review of electrolyte additives for ternary cathode lithium-ion battery[J]. Acta Chimica Sinica, 2018, 76(4): 30-48. DOI: 10.6023/A17110517.
|
[13] |
GRUGEON S, JANKOWSKI P, CAILLEU D, et al. Towards a better understanding of vinylene carbonate derived SEI-layers by synthesis of reduction compounds[J]. Journal of Power Sources, 2019, 427: 77-84. DOI: 10.1016/j.jpowsour.2019.04.061.
|
[14] |
BURNS J C, PETIBON R, NELSON K J, et al. Studies of the effect of varying vinylene carbonate (VC) content in lithium ion cells on cycling performance and cell impedance[J]. Journal of the Electrochemical Society, 2013, 160(10): A1668-A1674. DOI: 10.1149/2.031310jes.
|
[15] |
TALAIE E, BONNICK P, SUN X Q, et al. Methods and protocols for electrochemical energy storage materials research[J]. Chemistry of Materials, 2017, 29(1): 90-105. DOI: 10.1021/acs.chemmater.6b02726.
|
[16] |
XIAO Y, XU R, YAN C, et al. A toolbox of reference electrodes for lithium batteries[J]. Advanced Functional Materials, 2022, 32(13): 2108449. DOI: 10.1002/adfm.202108449.
|
[17] |
肖也, 徐磊, 闫崇, 等. 锂电池用参比电极的设计与应用[J]. 储能科学与技术, 2024, 13(1): 82-91. DOI: 10.19799/j.cnki.2095-4239. 2023.0638.
|
|
XIAO Y, XU L, YAN C, et al. Design and application of reference electrodes for lithium batteries[J]. Energy Storage Science and Technology, 2024, 13(1): 82-91. DOI: 10.19799/j.cnki.2095-4239.2023.0638.
|
[18] |
周思飞, 李骏, 王小飞, 等. 锂电池电解液电导率模型研究进展[J]. 储能科学与技术, 2022, 11(11): 3688-3698. DOI: 10.19799/j.cnki.2095-4239.2022.0344.
|
|
ZHOU S F, LI J, WANG X F, et al. Research progress in the conductivity model of lithium battery electrolytes[J]. Energy Storage Science and Technology, 2022, 11(11): 3688-3698. DOI: 10.19799/j.cnki.2095-4239.2022.0344.
|
[19] |
PELJO P, GIRAULT H H. Electrochemical potential window of battery electrolytes: The HOMO-LUMO misconception[J]. Energy & Environmental Science, 2018, 11(9): 2306-2309. DOI: 10.1039/C8EE01286E.
|
[20] |
XU K. Electrolytes, interfaces and interphases[M]. London: The Royal Society of Chemistry, 2023.
|
[21] |
ZHOU X, HUANG J, PAN Z Q, et al. Impedance characterization of lithium-ion batteries aging under high-temperature cycling: Importance of electrolyte-phase diffusion[J]. Journal of Power Sources, 2019, 426: 216-222. DOI: 10.1016/j.jpowsour.2019.04.040.
|
[22] |
KUO J J, KANG S D, CHUEH W C. Contact resistance of carbon-Lix(Ni, Mn, Co)O2 interfaces[J]. Advanced Energy Materials, 2022, 12(31): 2201114. DOI: 10.1002/aenm.202201114.
|