储能科学与技术 ›› 2025, Vol. 14 ›› Issue (5): 1727-1747.doi: 10.19799/j.cnki.2095-4239.2025.0383
孙蔷馥1(), 岑官骏1, 乔荣涵1, 朱璟1, 郝峻丰1, 张新新1, 田孟羽2, 金周2, 詹元杰2, 闫勇2, 贲留斌1,2, 俞海龙1, 刘燕燕1, 周洪3, 黄学杰1,2(
)
收稿日期:
2025-04-23
出版日期:
2025-05-28
发布日期:
2025-05-21
通讯作者:
黄学杰
E-mail:sunqiangfu22@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
作者简介:
孙蔷馥(2000—),女,硕士研究生,研究方向为锂离子电池,E-mail:sunqiangfu22@mails.ucas.ac.cn;
Qiangfu SUN1(), Guanjun CEN1, Ronghan QIAO1, Jing ZHU1, Junfeng HAO1, Xinxin ZHANG1, Mengyu TIAN2, Zhou JIN2, Yuanjie ZHAN2, Yong YAN2, Liubin BEN1,2, Hailong YU1, Yanyan LIU1, Hong ZHOU3, Xuejie HUANG1,2(
)
Received:
2025-04-23
Online:
2025-05-28
Published:
2025-05-21
Contact:
Xuejie HUANG
E-mail:sunqiangfu22@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
摘要:
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2025年2月1日至2025年3月31日上线的锂电池研究论文,共有6847篇,选择其中100篇加以评论。正极材料的研究集中于高镍三元的掺杂改性和表面包覆,以及其在长循环过程中的结构演变等。负极材料的研究重点包括硅基负极材料制备优化以及黏结剂的制备以缓冲体积变化、复合金属锂负极的制备以及界面构筑与调控。固态电解质的研究主要包括硫化物固态电解质、氯化物固态电解质和聚合物固态电解质的结构设计以及相关性能研究,电解液研究则主要包括不同电解质盐和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。针对固态电池,正极材料的体相改性和表面包覆、复合正极制备与界面修饰、锂金属负极的界面构筑和三维结构设计也有多篇文献报道。锂硫电池的研究重点是硫正极的结构设计、功能涂层和电解液的改进,固态锂硫电池也引起了广泛注意。电池工艺技术方面的研究包括厚电极制备技术等。表征分析涵盖了正极材料的结构相变、锂沉积负极的界面演变等。理论模拟工作侧重于固体电解质钟的离子输运行为研究。
中图分类号:
孙蔷馥, 岑官骏, 乔荣涵, 朱璟, 郝峻丰, 张新新, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 周洪, 黄学杰. 锂电池百篇论文点评(2025.2.1—2025.3.31)[J]. 储能科学与技术, 2025, 14(5): 1727-1747.
Qiangfu SUN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2025 to March 31, 2025)[J]. Energy Storage Science and Technology, 2025, 14(5): 1727-1747.
1 | LI A F, HU C Z, WANG G X, et al. W/Mg dual-site doping triggering high Ni migration barrier and rock-salt passivation layer for long-cycle and thermal stable ultrahigh-nickel cathode material LiNi0.9Co0.1O2[J]. Journal of Power Sources, 2025, 635: 236506. DOI: 10.1016/j.jpowsour.2025.236506. |
2 | ZOU Y, TANG Y L, ZHENG Q Z, et al. Enabling the strengthened structural and interfacial stability of high-nickel LiNi0.9Co0.05Mn0.05O2 cathode by a coating-doping-microstructure regulation three-In-one strategy[J]. Advanced Functional Materials, 2024, 34(41): 2406068. DOI: 10.1002/adfm.202406068. |
3 | LI J Y, LI Z W, ZHANG X G, et al. A precursor-structural regulation strategy enables long-cycling and fast-charging ultra-high nickel layered cathode materials[J]. Materials Today Chemistry, 2025, 44: 102606. DOI: 10.1016/j.mtchem.2025.102606. |
4 | XIAO Z, CHEN A Q, MA R J, et al. Tungsten doping reinforced structural stability of single-crystal nickel-rich LiNi0.9Co0.1O2 cathodes[J]. Journal of Materials Chemistry A, 2025, 13(10): 7228-7236. DOI: 10.1039/D4TA07391F. |
5 | SUN H B, YANG Z J, GHOSH R, et al. Thermal processing to modulate surface chemistry and bulk charge distribution in nickel-rich layered lithium positive electrodes[J]. Nature Communications, 2025, 16: 1478. DOI: 10.1038/s41467-025-56075-7. |
6 | ZHANG H J, QIN L, HUANG X, et al. Perovskite-coated small-size single-crystalline W-doped Ni-rich cathodes with greatly enhanced power density for Li-ion batteries[J]. Journal of Materials Chemistry A, 2024, 12(36): 24542-24548. DOI: 10.1039/D4TA04197F. |
7 | KWON Y M, KIM C S, KIM K, et al. High-volumetric-energy-density cathode material from single-sized precursor via precise additive control[J]. Journal of Industrial and Engineering Chemistry, 2025, 145: 410-418. DOI: 10.1016/j.jiec.2024.10.036. |
8 | LI H, LIU H, LUO S R, et al. Tuning Li occupancy and local structures for advanced co-free Ni-rich positive electrodes[J]. Nature Communications, 2025, 16: 2203. DOI: 10.1038/s41467-025-57063-7. |
9 | WANG Y, MENG D C, et al. Breaking the cycle of heterogeneous degradation: Surface-targeted protection for Ni-rich cathodes in practical high-energy batteries[J]. ACS Energy Letters, 2025, 10(3): 1457-1465. DOI: 10.1021/acsenergylett.4c03556. |
10 | WANG Q, ZHANG Y M, YAO M, et al. A lithium-selective "OR-gate" enables fast-kinetics and ultra-stable Li-rich cathodes for polymer-based solid-state batteries[J]. Energy & Environmental Science, 2025, 18(6): 2931-2939. DOI: 10.1039/D4EE05264A. |
11 | NISAR U, REICHEL B, MUNDSZINGER M, et al. Tailoring co-free LiNi0.5Mn1.5O4 material for high-voltage lithium-ion batteries: Particle design & grain boundary engineering[J]. Advanced Energy Materials, 2024, 14(43): 2403024. DOI: 10.1002/aenm. 202403024. |
12 | KANG B, PARK J, KIM B, et al. Elucidating lithium-ion diffusion kinetics in cation-disordered rocksalt cathodes[J]. Energy & Environmental Science, 2025, 18(5): 2330-2341. DOI: 10.1039/D4EE04580G. |
13 | MEI Y, LI Y J, WANG H J, et al. Tetrahedral lithium stuffing in disordered rocksalt cathodes for high-power-density and energy-density batteries[J]. Journal of the American Chemical Society, 2025, 147(5): 4438-4449. DOI: 10.1021/jacs.4c15631. |
14 | WANG X X, YU A Y, JIANG T, et al. Accelerating Li-ion diffusion in LiFePO4 by polyanion lattice engineering[J]. Advanced Materials, 2024, 36(47): 2410482. DOI: 10.1002/adma.202410482. |
15 | HUANG Y H, LIU Y X, LIU W, et al. Reversible energy storage based on LiF-I- reaction using spent CFx cathode[J]. Journal of Power Sources, 2025, 638: 236599. DOI: 10.1016/j.jpowsour. 2025.236599. |
16 | OUYANG B, HUANG D, BIAN X H, et al. In situ electropolymerization of 2, 7-di(thienyl)pyrene-4, 5, 9, 10-tetraone for superior lithium-ion battery cathodes[J]. Chemical Engineering Journal, 2025, 508: 161004. DOI: 10.1016/j.cej. 2025.161004. |
17 | LIU L B, GUO H Y, YU Y X, et al. An esterified cross-linked polymer binder for high-rate stabilised silicon anodes in lithium-ion batteries[J]. Electrochimica Acta, 2025, 519: 145824. DOI: 10. 1016/j.electacta.2025.145824. |
18 | YAN W G, MA S Y, SU Y F, et al. "Shooting three birds with one stone": Bi-conductive and robust binder enabling low-cost micro-silicon anodes for high-rate and long-cycling operation[J]. Energy Storage Materials, 2025, 76: 104140. DOI: 10.1016/j.ensm. 2025.104140. |
19 | HUH S H, KIM S H, BAE J S, et al. Understanding the impact of stripping behavior on subsequent lithium metal growth for achieving homogeneity[J]. Energy & Environmental Materials, 2025, DOI: 10.1002/eem2.70003. |
20 | CHENG L, LIU J C, WANG Y C, et al. Lithiophilic-gradient, Li+ supplementary interphase design for lean lithium metal batteries[J]. Advanced Materials, 2025, 37(14): 2420255. DOI: 10.1002/adma.202420255. |
21 | YANG Y Z, LI Z L, ZHANG M, et al. Electrolyte chemistry modulation toward high-performance and ultralow-temperature silicon anode[J]. Advanced Materials, 2025, 37(15): 2417981. DOI: 10.1002/adma.202417981. |
22 | HUANG C H, YANG X L, GONG S Q, et al. Hierarchical-structured RGO@EGaIn composites as advanced self-healing anode for room-temperature liquid metal battery[J]. Advanced Materials, 2025, 37(14): 2419060. DOI: 10.1002/adma.202419060. |
23 | WANG D W, LIU C, WANG R Y, et al. Electronic localization enables long-cycling sulfides-based all-solid-state lithium batteries[J]. Angewandte Chemie International Edition, 2025, DOI: 10.1002/anie.202501411. |
24 | LUO M, WANG J Y, WANG L Z, et al. Li6PS5Cl/MoS2 hybrid electrolyte integrates high sulfur conversion kinetics with stable lithium metal interfaces in all-solid-state lithium-sulfur batteries[J]. Nano Energy, 2025, 135: 110628. DOI: 10.1016/j.nanoen.2024. 110628. |
25 | SHEN K E, SHI W Z, SONG H M, et al. Solid catholyte with regulated interphase redox for all-solid-state lithium-sulfur batteries[J]. Advanced Materials, 2025, 37(11): 2417171. DOI: 10.1002/adma.202417171. |
26 | SONG H M, MÜNCH K, LIU X, et al. All-solid-state Li-S batteries with fast solid-solid sulfur reaction[J]. Nature, 2025, 637(8047): 846-853. DOI: 10.1038/s41586-024-08298-9. |
27 | WANG G Z, ZHANG S M, WU H, et al. Oxychloride polyanion clustered solid-state electrolytes via hydrate-assisted synthesis for all-solid-state batteries[J]. Advanced Materials, 2025, 37(4): 2410402. DOI: 10.1002/adma.202410402. |
28 | ZHANG G X, LIU Z T, MA Y F, et al. Li2.9Fe0.9Zr0.1Cl6 as redox-active catholyte for solid-state Li-ion batteries[J]. Chemistry of Materials, 2024, 36(20): 10104-10112. DOI: 10.1021/acs.chemmater. 4c01385. |
29 | SUN F T, GAO Z S, YANG Y, et al. Li-Fe-Cl families as novel solid electrolytes for all-solid-state batteries[J]. ACS Applied Materials & Interfaces, 2024. DOI: 10.1021/acsami.4c09878. |
30 | LI W H, LI M S, WANG S, et al. Superionic conducting vacancy-rich β-Li3N electrolyte for stable cycling of all-solid-state lithium metal batteries[J]. Nature Nanotechnology, 2024, 20(2): 265-275. DOI: 10.1038/s41565-024-01813-z. |
31 | PEI F, HUANG Y M, WU L, et al. Multisite crosslinked poly(ether-urethane)-based polymer electrolytes for high-voltage solid-state lithium metal batteries[J]. Advanced Materials, 2024, 36(49): 2409269. DOI: 10.1002/adma.202409269. |
32 | YE G, HONG X F, HE M X, et al. All-solid-state lithium metal batteries with microdomain-regulated polycationic solid electrolytes[J]. Advanced Materials, 2025, 37(12): 2417829. DOI: 10.1002/adma.202417829. |
33 | LIU S H, TIAN W S, SHEN J Q, et al. Bioinspired gel polymer electrolyte for wide temperature lithium metal battery[J]. Nature Communications, 2025, 16: 2474. DOI: 10.1038/s41467-025-57856-w. |
34 | HE Y B, WANG C Y, ZHANG R, et al. A self-healing plastic ceramic electrolyte by an aprotic dynamic polymer network for lithium metal batteries[J]. Nature Communications, 2024, 15: 10015. DOI: 10.1038/s41467-024-53869-z. |
35 | PANG X, SHI B B, LIU Y W, et al. Phosphorylated covalent organic framework membranes toward ultrafast single lithium-ion transport[J]. Advanced Materials, 2024, 36(52): 2413022. DOI: 10.1002/adma.202413022. |
36 | ZHANG F M, ZHANG P, ZHANG W H, et al. Five volts lithium batteries with advanced carbonate-based electrolytes: A rational design via a trio-functional addon materials[J]. Advanced Materials, 2024, 36(44): 2410277. DOI: 10.1002/adma.202410277. |
37 | WEI A J, YANG Y Q, MU J P, et al. Enhancing the electrochemical performance of high-voltage LiNi0.5Mn1.5O4 batteries with a multifunctional inorganic MgHPO4 electrolyte additive[J]. Scientific Reports, 2025, 15: 6186. DOI: 10.1038/s41598-025-90702-z. |
38 | XIAO Z X, WU S Y, REN X Z, et al. Superior high-rate Ni-rich lithium batteries based on fast ion-desolvation and stable solid-electrolyte interphase[J]. Advanced Science, 2025, 12(12): 2413419. DOI: 10.1002/advs.202413419. |
39 | WANG Z M, HE Z Y, WANG Z S, et al. Engineering the solid electrolyte interphase for enhancing high-rate cycling and temperature adaptability of lithium-ion batteries[J]. Chemical Science, 2025, 16(8): 3571-3579. DOI: 10.1039/D4SC07916G. |
40 | XU Z X, ZHANG X Y, YANG J, et al. High-voltage and intrinsically safe electrolytes for Li metal batteries[J]. Nature Communications, 2024, 15: 9856. DOI: 10.1038/s41467-024-51958-7. |
41 | ZHANG N, LI A M, ZHANG W R, et al. 4.6 V moisture-tolerant electrolytes for lithium-ion batteries[J]. Advanced Materials, 2024, 36(50): 2408039. DOI: 10.1002/adma.202408039. |
42 | LIU L X, LI X Q, et al. Highly improved cyclic stability of high voltage LiNi0.6Co0.2Mn0.2O2/graphite pouch cells via a silicon-based electrolyte additive[J]. ACS Applied Materials & Interfaces, 2025, 17(8): 12105-12116. DOI: 10.1021/acsami.4c20055. |
43 | WU X T, FENG J W, AMZIL S, et al. A functional slurry additive for robust interphase and stabilized high-voltage nickel-rich cathodes in lithium-ion batteries[J]. Chemical Engineering Journal, 2025, 509: 161446. DOI: 10.1016/j.cej.2025.161446. |
44 | PENG Y, CHEN J W, LIU G P, et al. Highly adaptable electrode-electrolyte interphases constructed by dual-additive-optimized electrolyte for 4.5 V lithium metal batteries[J]. Advanced Functional Materials, 2025, DOI: 10.1002/adfm. 202501489. |
45 | ZHANG A P, BI Z H, YANG E D, et al. Formulating electrophilic electrolyte for in situ stabilization of 4.8 V Li-rich batteries with 100% initial coulombic efficiency[J]. Angewandte Chemie International Edition, 2025, DOI: 10.1002/anie.202502603. |
46 | XU Q S, LI T, JU Z J, et al. Li2ZrF6-based electrolytes for durable lithium metal batteries[J]. Nature, 2025, 637(8045): 339-346. DOI: 10.1038/s41586-024-08294-z. |
47 | MIN X Q, WANG L, SHEN M, et al. A multifunctional additive extending the calendar life of Ni-rich cathode-based lithium-ion batteries for electric vehicles[J]. Materials Today, 2025, 83: 157-165. DOI: 10.1016/j.mattod.2024.12.021. |
48 | SU C C, HE M N, DATO M A, et al. Constructing synthetic organosulfur additive for high voltage lithium-ion batteries[J]. Nano Energy, 2025, 137: 110807. DOI: 10.1016/j.nanoen.2025.110807. |
49 | WANG Y W, LIU J, JI H Q, et al. Optimizing Si─O conjugation to enhance interfacial kinetics for low-temperature rechargeable lithium-ion batteries[J]. Advanced Materials, 2025, 37(3): 2412155. DOI: 10.1002/adma.202412155. |
50 | SANG X Y, HU K J, CHEN J X, et al. Temperature-inert weakly solvating electrolytes for low-temperature lithium-ion batteries with micro-sized silicon anodes[J]. Angewandte Chemie International Edition, 2025, 64(17): e202500367. DOI: 10.1002/anie.202500367. |
51 | YU Q, SUN W, WANG S, et al. Smart electrolytes for lithium batteries with reversible thermal protection at high temperatures[J]. Batteries & Supercaps, 2024, 7(12): e202400339. DOI: 10. 1002/batt.202400339. |
52 | LU Y, CAO Q B, ZHANG W L, et al. Breaking the molecular symmetricity of sulfonimide anions for high-performance lithium metal batteries under extreme cycling conditions[J]. Nature Energy, 2024, 10(2): 191-204. DOI: 10.1038/s41560-024-01679-4. |
53 | LUO X, WU H Y, CHEN C, et al. Synthesis of trisiloxane with the dioxaborolane group as a cathode film-forming electrolyte additive for high-temperature LiMn2O4/Li4Ti5O12 batteries[J]. ACS Applied Materials & Interfaces, 2024, 16(46): 63681-63691. DOI: 10.1021/acsami.4c16126. |
54 | GUO X Y, XU S T, GU R, et al. Breaking aggregation state to achieve low-temperature fast charging of lithium metal batteries[J]. Angewandte Chemie International Edition, 2025, 64(11): e202414613. DOI: 10.1002/anie.202414613. |
55 | DEGUCHI M, TODOROV Y M, ABE K. Functional electrolyte: Design of corrosion inhibition additives to protect Cu current collectors in over-discharged state[J]. Journal of Power Sources, 2025, 625: 235613. DOI: 10.1016/j.jpowsour.2024.235613. |
56 | FAN X Z, LIU M, ZHANG J H, et al. Dielectric increment of electrolytes mediated by ion association for lithium-sulfur batteries[J]. Advanced Functional Materials, 2025, DOI: 10.1002/adfm.202425240. |
57 | JIANG S, LI R H, CHEN L, et al. Deciphering the purification additive chemistries for ultra-stable high-voltage lithium-ion batteries[J]. Advanced Materials, 2025, 37(15): 2417285. DOI: 10.1002/adma.202417285. |
58 | YUAN H Y, LIN W J, CHEN S J, et al. Unlocking sulfide solid-state battery longevity by the paradigm of dual-functional plastic crystal[J]. ACS Nano, 2025, 19(2): 2570-2580. DOI: 10.1021/acsnano.4c14288. |
59 | YIN X J, UNIVERSITY T, et al. Beyond polymerization: in situ coupled fluorination enables more stable interfaces for solid-state lithium batteries[J]. Journal of the American Chemical Society, 2025, 147(5): 4393-4402. DOI: 10.1021/jacs.4c15079. |
60 | FUJITA Y, UNIVERSITY O M, DING J, et al. Electrode/electrolyte interphase formation by lithium iodide in a Li2S-based positive electrode for all-solid-state batteries[J]. ACS Applied Energy Materials, 2025, 8(4): 2192-2199. DOI: 10.1021/acsaem.4c02731. |
61 | ZHOU X, JIANG M, DUAN Y H, et al. Multi-electron transfer halide cathode materials based on intercalation-conversion reaction towards all-solid-state lithium batteries[J]. Angewandte Chemie International Edition, 2025, 64(4): e202416635. DOI: 10.1002/anie.202416635. |
62 | LIU Z T, ZHANG G X, PEPAS J, et al. Li2FeCl4 as a cost-effective and durable cathode for solid-state Li-ion batteries[J]. ACS Energy Letters, 2024, 9(11): 5464-5470. DOI: 10.1021/acsenergylett. 4c02376. |
63 | SU H, HU Y, WANG M K, et al. Localized electrolyte grain engineering to suppress Li intrusion in all-solid-state batteries[J]. Advanced Materials, 2025, 37(15): 2500673. DOI: 10.1002/adma.202500673. |
64 | LI J W, LI Y Y, LIU T, et al. Self-limiting reaction of solid electrolyte empowering ultralong lifespan all-solid-state lithium metal batteries with Li6PS5Cl-based electrolyte membrane[J]. Advanced Functional Materials, 2025,DOI: 10.1002/adfm.202504546. |
65 | LEE Y H, KIM D H, YOON J M, et al. Empowering all-solid-state Li-ion batteries with self-stabilizing Sn-based anodes[J]. Joule, 2024, 8(10): 2777-2793. DOI: 10.1016/j.joule.2024.08.011. |
66 | ZHANG Z Y, ZHANG X L, LIU Y, et al. Silicon-based all-solid-state batteries operating free from external pressure[J]. Nature Communications, 2025, 16: 1013. DOI: 10.1038/s41467-025-56366-z. |
67 | LIN Z J, YAO Q S, YANG S J, et al. Highly safe all-solid-state lithium metal battery enabled by interface thermal runaway regulation between lithium metal and solid-state electrolyte[J]. Advanced Functional Materials, 2025, DOI: 10.1002/adfm.202424110. |
68 | LU C H, JIANG H B, CHENG X R, et al. High-performance fibre battery with polymer gel electrolyte[J]. Nature, 2024, 629(8010): 86-91. DOI: 10.1038/s41586-024-07343-x. |
69 | GU J H, LI Z Y, HONG B, et al. Engineering electrolytes with transition metal ions for the rapid sulfur redox and in situ solidification of polysulfides in lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2024, 16(45): 61934-61945. DOI: 10.1021/acsami.4c11693. |
70 | ZHANG L C, WANG T S, CHEN J J, et al. An artificial cathode-electrolyte interphase enabling one-step sulfur transition in polyethylene oxide-based solid-state lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2024, 12(37): 25407-25415. DOI: 10.1039/D4TA02413C. |
71 | CAO Y, GENG C N, BAI C, et al. Integrating solid interfaces for catalysis in all-solid-state lithium-sulfur batteries[J]. Energy & Environmental Science, 2025, 18(8): 3795-3806. DOI: 10.1039/D4EE05845C. |
72 | WU Z, LIU M L, HE W F, et al. Unveiling the autocatalytic growth of Li2S crystals at the solid-liquid interface in lithium-sulfur batteries[J]. Nature Communications, 2024, 15: 9535. DOI: 10. 1038/s41467-024-53797-y. |
73 | ZHOU F, GONG Z Q, WANG R H, et al. Band structure and spin-state-induced electronic configuration regulation for efficient sulfur redox reaction[J]. Advanced Functional Materials, 2025, 35(12): 2417730. DOI: 10.1002/adfm.202417730. |
74 | PLATEAU T P, BOYER G, PARK J. Hyper-thick electrodes for lithium-ion batteries enabled by micro-electric-field process[J]. Advanced Science, 2025, 12(7): 2413444. DOI: 10.1002/advs. 202413444. |
75 | YANG Y H, LI Z F, YANG Z L, et al. Ultrafast lithium-ion transport engineered by nanoconfinement effect[J]. Advanced Materials, 2025, 37(8): 2416266. DOI: 10.1002/adma.202416266. |
76 | MISIEWICZ C, EDSTRÖM K, BERG E J. Formation of a cathode electrolyte interphase on high-voltage Li-ion cathodes[J]. Chemistry of Materials, 2024, 36(19): 9729-9740. DOI: 10.1021/acs.chemmater.4c01872. |
77 | WAN G, POLLARD T P, MA L, et al. Solvent-mediated oxide hydrogenation in layered cathodes[J]. Science, 2024, 385(6714): 1230-1236. DOI: 10.1126/science.adg4687. |
78 | YU L, DAI A, ZHOU T, et al. Parasitic structure defect blights sustainability of cobalt-free single crystalline cathodes[J]. Nature Communications, 2025, 16: 434. DOI: 10.1038/s41467-024-55235-5. |
79 | KARGER L, KORNEYCHUK S, SICOLO S, et al. Decoupling substitution effects from point defects in layered Ni-rich oxide cathode materials for lithium-ion batteries[J]. Advanced Functional Materials, 2024, 34(41): 2402444. DOI: 10.1002/adfm.202402444. |
80 | LEE S, LEE D, MANTHIRAM A. Mixed ionic-electronic conductivity of high-nickel, single-crystal cathodes influencing the cycling stability of all-solid-state lithium-ion batteries[J]. Journal of Materials Chemistry A, 2024, 12(38): 26244-26252. DOI: 10.1039/D4TA03727H. |
81 | LIU Z M, ZENG Y Q, TAN J Y, et al. Revealing the degradation pathways of layered Li-rich oxide cathodes[J]. Nature Nanotechnology, 2024, 19(12): 1821-1830. DOI: 10.1038/s41565-024-01773-4. |
82 | NAM C, KOO B, KIM J, et al. Dynamic lithium transport pathway via crack formation in phase-separating battery particles[J]. ACS Nano, 2025, 19(10): 9936-9945. DOI: 10.1021/acsnano.4c15960. |
83 | STRECK L, ROTH T, BOSCH H, et al. Analysis of transient current and heat flow during voltage holds: For 70 wt% silicon anode lithium-ion cells[J]. Journal of the Electrochemical Society, 2024, 171(11): 110530. DOI: 10.1149/1945-7111/ad940e. |
84 | SUN K, et al. Chemo-mechanics and morphological dynamics of Si electrodes in all-solid-state Li-ion batteries[J]. ACS Energy Letters, 2025, 10(3): 1229-1234. DOI: 10.1021/acsenergylett.5c00132. |
85 | WANG Q D, ZHAO C L, WANG S W, et al. Interphase design for lithium-metal anodes[J]. Journal of the American Chemical Society, 2025, 147(11): 9365-9377. DOI: 10.1021/jacs.4c15759. |
86 | SUN Z W, DAI R, ZHANG S, et al. Microscale analysis on cycling aging effect in mechanical behavior of graphite anode coating: Morphological statistics and nanoindentation[J]. Journal of Energy Storage, 2025, 116: 116088. DOI: 10.1016/j.est.2025. 116088. |
87 | ZHANG X Y, CHENG S C, FU C K, et al. Unveiling the structure and diffusion kinetics at the composite electrolyte interface in solid-state batteries[J]. Advanced Energy Materials, 2024, 14(34): 2401802. DOI: 10.1002/aenm.202401802. |
88 | LIU Z C, TAO J M, JIANG H, et al. Deciphering interfacial stability of sulfide and halide-based electrolytes via operando X-ray photoelectron spectroscopy[J]. Nano Letters, 2025, 25(11): 4605-4612. DOI: 10.1021/acs.nanolett.5c00564. |
89 | KAELI E, JIANG Z L, YANG X M, et al. Decoupling first-cycle capacity loss mechanisms in sulfide solid-state batteries[J]. Energy & Environmental Science, 2025, 18(3): 1452-1463. DOI: 10.1039/D4EE04908J. |
90 | CUI Z H, LIU C, WANG F, et al. Navigating thermal stability intricacies of high-nickel cathodes for high-energy lithium batteries[J]. Nature Energy, 2025, 10(4): 490-501. DOI: 10.1038/s41560-025-01731-x. |
91 | LIU H Y, CHEN Y D, CHIEN P H, et al. Dendrite formation in solid-state batteries arising from lithium plating and electrolyte reduction[J]. Nature Materials, 2025, 24(4): 581-588. DOI: 10. 1038/s41563-024-02094-6. |
92 | PARK S H, AYYASWAMY A, GJERDE J, et al. Filament-induced failure in lithium-reservoir-free solid-state batteries[J]. ACS Energy Letters, 2025, 10(3): 1174-1182. DOI: 10.1021/acsenergylett. 5c00004. |
93 | OTOYAMA M, TERASAKI N, TAKEUCHI T, et al. Visualization of local strain distributions in all-solid-state batteries with silicon negative electrodes using digital image correlation for operando/In situ microscopy images[J]. ChemElectroChem, 2025, 12(8): e202400616. DOI: 10.1002/celc.202400616. |
94 | CHEN P, QU H N, ZHENG D, et al. Long cycle stability of all-solid-state lithium-sulfur batteries at low pressure and ambient temperature: Addressing contact and diffusion kinetics[J]. Advanced Functional Materials, 2025, DOI: 10.1002/adfm.202423633. |
95 | CHEN Z M, DU T, ANOOP KRISHNAN N M, et al. Disorder-induced enhancement of lithium-ion transport in solid-state electrolytes[J]. Nature Communications, 2025, 16: 1057. DOI: 10.1038/s41467-025-56322-x. |
96 | SUN Y C, NING Y B, QIANG Z M, et al. Digital-twin-assisted insights into irreversible capacity and activation strategy power high-loading solid-state batteries[J]. Angewandte Chemie International Edition, 2025, DOI: 10.1002/anie.202502169. |
97 | ASHERI A, REZAEI S, GLAVAS V, et al. Microstructure impact on chemo-mechanical fracture of polycrystalline lithium-ion battery cathode materials[J]. Engineering Fracture Mechanics, 2024, 309: 110370. DOI: 10.1016/j.engfracmech.2024.110370. |
98 | SONG Y J, TAN L, GAO K, et al. Insights into cathode densification of calendering process by the combination of in situ CT and DEM[J]. Powder Technology, 2025, 453: 120667. DOI: 10.1016/j.powtec.2025.120667. |
99 | BANERJEE S, TKATCHENKO A. Non-local interactions determine local structure and lithium diffusion in solid electrolytes[J]. Nature Communications, 2025, 16: 1672. DOI: 10.1038/s41467-025-56662-8. |
100 | CAI X, ZHANG C P, CHEN J, et al. Sensorless battery expansion estimation using electromechanical coupled models and machine learning[J]. Journal of Energy Chemistry, 2025, 105: 142-157. DOI: 10.1016/j.jechem.2024.12.068. |
[1] | 汪红辉, 李嘉鑫, 储德韧, 李彦仪, 许铤. 磷酸铁锂电池存储失效机理及热安全性研究[J]. 储能科学与技术, 2025, 14(5): 1797-1805. |
[2] | 陈英健, 吴尚, 曹元成, 杜宝帅, 王振兴, 欧阳钟文, 汤舜. 磁场分选在废旧锂电池正负极材料回收中的应用[J]. 储能科学与技术, 2025, 14(5): 1918-1927. |
[3] | 许晓茹, 欧建臻, 刘佳伟, 陈智聪, 叶豪, 刘颖隆, 刘英丽, 林泽宇, 刘晶晶, 简俊辉, 罗栩, 范竞敏, 王超, 雷励斌, 梁波. 带嵌入式微通道陶瓷裂解反应器的管式氨燃料电池[J]. 储能科学与技术, 2025, 14(5): 1818-1828. |
[4] | 李志强, 巴义春, 孙广强. 锂电池蜂窝形叉状流道冷板散热研究[J]. 储能科学与技术, 2025, 14(5): 1776-1783. |
[5] | 贺瑞璘, 张通, 吴镓淳, 王朝阳, 邓永红, 张光照, 许晓雄. 骨架型材料与设计在高比能锂电池中的应用研究进展[J]. 储能科学与技术, 2025, 14(5): 1758-1775. |
[6] | 丰伟. 废旧锂电池失效机制及回收再利用研究现状[J]. 储能科学与技术, 2025, 14(5): 1928-1930. |
[7] | 刘顺新, 许令平, 张建兴, 曾光, 李昊阳. 基于双通道并行串联式液冷板下锂电池温升特性数值分析[J]. 储能科学与技术, 2025, 14(4): 1496-1506. |
[8] | 金成龙, 孙梦婷, 孟庆飞, 张姝玮, 周舟, 齐宇阳. Li/Cr8O21 电池宽温电解液的设计与应用[J]. 储能科学与技术, 2025, 14(4): 1369-1376. |
[9] | 彭鹏, 王成东, 陈满, 王青松, 雷旗开, 金凯强. 某钛酸锂电池储能电站热失控致灾危害评价[J]. 储能科学与技术, 2025, 14(4): 1617-1630. |
[10] | 陈志铭, 储爱民, 周子榆, 赵玉萍, 陈友明. 含碳雾滴燃烧制备微纳空心球型富锂锰基正极材料及性能研究[J]. 储能科学与技术, 2025, 14(4): 1362-1368. |
[11] | 吉帅静, 王军伟, 杜宝帅, 徐丽, 楼平, 管敏渊, 汤舜, 程时杰, 曹元成. LiFe x Mn1–x PO4 (0<x<1)电池稳定性与安全性的提升路径:从失效机制到综合优化策略[J]. 储能科学与技术, 2025, 14(3): 965-983. |
[12] | 李南, 马静, 黄挺秀, 沈毅星, 沈旻, 江依义, 洪涛, 马国强, 马紫峰. 腈类化合物在高电压电解液中的研究进展[J]. 储能科学与技术, 2025, 14(3): 997-1009. |
[13] | 许陈程, 王湛, 李爽, 蒋江民, 鞠治成. 锂离子电池预锂化技术研究进展及工程化应用展望[J]. 储能科学与技术, 2025, 14(3): 930-946. |
[14] | 卢功勋, 袁华栋, 罗剑敏, 王垚, 刘育京, 石鹏, 邹世辉, 周光敏, 陶新永, 佴建威. 锂金属表面预处理策略:进展与展望[J]. 储能科学与技术, 2025, 14(3): 947-964. |
[15] | 周丽萍, 周德清, 郑锋华, 潘齐常, 胡思江, 蒋永杰, 王红强, 李庆余. 锂离子电池Si@Void@C复合负极材料的制备及其应用[J]. 储能科学与技术, 2025, 14(3): 1115-1122. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||