储能科学与技术 ›› 2025, Vol. 14 ›› Issue (5): 1748-1757.doi: 10.19799/j.cnki.2095-4239.2024.1085

• 储能材料与器件 • 上一篇    下一篇

钠离子电池正极预钠化技术进展

李昱1(), 李丹丹2, 谢飞1(), 唐彬2, 容晓晖1, 梁沁沁2, 胡勇胜1()   

  1. 1.中国科学院物理研究所,北京 100190
    2.广西电力装备智能控制与运维重点实验室,广西电网有限责任公司电力科学研究院,广西 南宁 530023
  • 收稿日期:2024-11-19 修回日期:2024-11-25 出版日期:2025-05-28 发布日期:2025-05-21
  • 通讯作者: 谢飞,胡勇胜 E-mail:3510709270@qq.com;fxie@iphy.ac.cn;yshu@iphy.ac.cn
  • 作者简介:李昱(1998—),男,博士研究生,研究方向为钠离子电池界面,E-mail:3510709270@qq.com
  • 基金资助:
    国家重点研发计划项目(2022YFB2402500);国家自然科学基金项目(22339001);广西电网电力科学研究院科技项目(GXKJXM20210260)

Recent progress of cathode presodiation strategies in sodium-ion batteries

Yu LI1(), Dandan LI2, Fei XIE1(), bin TANG2, Xiaohui RONG1, Qinqin LIANG2, Yongsheng HU1()   

  1. 1.Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
    2.Guangxi Key Laboratory of intelligent Control and Maintenance of Power Equipment, Electric Power Research Institute of Guangxi Power Grid Co. , Ltd. , Nanning 530023, Guangxi, China
  • Received:2024-11-19 Revised:2024-11-25 Online:2025-05-28 Published:2025-05-21
  • Contact: Fei XIE, Yongsheng HU E-mail:3510709270@qq.com;fxie@iphy.ac.cn;yshu@iphy.ac.cn

摘要:

钠离子电池凭借原材料来源广泛、成本低廉等优势,被视作下一代非常重要的电化学储能器件。预钠化技术可通过引入额外的钠源,对首周充电时因生成界面而不可逆消耗的钠离子进行有效补充,进而有效提升电池的循环寿命与能量密度,在钠离子电池的实际生产应用中具有重要价值。预钠化技术主要分为负极预钠化技术和正极预钠化技术。正极预钠化技术里的自牺牲型补钠剂预混法,操作简便,无需额外增加设备,有利于大规模推广。本文首先简单介绍了补钠剂的分类,然后梳理了这一方法在实际生产应用过程中存在的问题,具体涵盖生产储存环节的安全性与稳定性问题、电极制造过程中补钠剂的碱性以及粒径大小的问题,以及电池循环时补钠剂分解电位过高、补钠剂分解产物对电池体系的影响,补钠剂分解后形成的孔洞对极片产生的影响等问题。随后,本文归纳了近年来预钠化相关文献与专利中对应的解决方案,还对这一方法在无负极电池中的应用情况进行了介绍。最后,本文对未来补钠剂的开发提出了相应的设计原则,有望为正极预钠化技术的应用提供一定的指导与启发。

关键词: 钠离子电池, 预钠化, 自牺牲型补钠剂, 专利分析

Abstract:

Sodium-ion batteries are regarded as one of the most promising next-generation electrochemical energy storage technologies owing to the abundant raw material availability and low cost. The presodiation technique offers a practical solution to replenish sodium ions irreversibly consumed during the first-cycle charging, a process caused by the formation of interfaces. By introducing an additional sodium source, this technique effectively improves the cycle life and energy density of the batteries, making it highly valuable for the large-scale production and application of sodium-ion batteries.Presoiation techniques are mainly divided into anode presodiation and cathode presodiation. Among these, the self-sacrificial sodium supplement agent pre-mixing method, part of the cathode presodiation technique, stands out owing to its simple operation and lack of need for additional equipment, making it favorable for large-scale implementation. This article first briefly introduces the classification of sodium supplement agents. It then examines the challenges associated with the practical use and production of the self-sacrificial sodium supplement agent pre-mixing method. Key challenges include safety and stability issues during production and storage, concerns related to the alkalinity and particle size of sodium supplement agents during electrode manufacturing, as well as issues such as excessive decomposition potential during battery cycling. The decomposition products and their impacts on electrode sheets after decomposition also pose significant problems. Subsequently, this article summarizes corresponding solutions proposed in recent years through presodiation-related research and patents. It further explores the application of this method in anode-free sodium-metal batteries. Finally, it presents design principles for developing improved sodium supplement agents, offering guidance for the future application of the cathode presodiation technique.

Key words: sodium-ion batteries, presodiation, self-sacrificial sodiation reagents, patent analysis

中图分类号: