储能科学与技术 ›› 2025, Vol. 14 ›› Issue (10): 4043-4053.doi: 10.19799/j.cnki.2095-4239.2025.0259
收稿日期:
2025-03-25
出版日期:
2025-10-28
发布日期:
2025-10-20
通讯作者:
靳文婷
E-mail:43375217@qq.com;1182845374@qq.com
作者简介:
蔡艺生(1981—),男,博士,教授,博士生导师,研究方向为国家安全、科技安全、情报学研究等,E-mail:43375217@qq.com;
基金资助:
Received:
2025-03-25
Online:
2025-10-28
Published:
2025-10-20
Contact:
Wenting JIN
E-mail:43375217@qq.com;1182845374@qq.com
摘要:
分析中美两国在车用锂离子电池技术方面的专利信息,有助于把握该技术的创新发展国际主流趋势以及中国在国际竞争中所处的位置,能为中国相关技术、产业实现高质量发展和高水平安全提供参考。本文以检索自incoPat数据库的专利信息为分析对象,从专利的数量、质量、技术领域及热点角度对比分析中美两国车用锂离子电池技术创新发展情况。中国在研发成果数量上追赶美国的效果尤为明显,但成果质量上的追赶效果略为逊色,在基础核心技术掌控情况、成果市场价值等方面,与美国相比仍有一定差距。中美在技术生命周期上各有优势,中国能否在中短期内实现关键核心技术突破,是影响两国未来竞争格局的关键。两国对车用锂离子电池的关键核心技术都投入大量研发资源,但两国的技术研发热点和侧重追求的技术目标有所不同。最后,从三个方面对中国相关技术、产业的发展提出建议。
中图分类号:
蔡艺生, 靳文婷. 基于专利分析的中美车用锂离子电池技术创新发展比较研究[J]. 储能科学与技术, 2025, 14(10): 4043-4053.
Yisheng CAI, Wenting JIN. Innovation-driven developments in automotive lithium-ion battery technologies: A patent-based comparison of China and the United States[J]. Energy Storage Science and Technology, 2025, 14(10): 4043-4053.
表1
专利质量的三维评价体系"
评价维度 | 具体指标 | 衡量维度 | 指标意义 | 参考文献来源 |
---|---|---|---|---|
技术质量 | 专利被引次数 | 技术影响力 | 被引次数越多,说明专利技术的基础性与通用性越强,对后续专利的影响越大 | 李睿等[ |
IPC小类数 | 技术覆盖范围 | IPC小类数越多,表明该技术的技术覆盖范围较广 | 张杰等[ | |
专利引证次数 | 技术创新度 | 引证次数越多,技术的基础越深厚、创新度越高 | 霍翠婷等[ | |
市场质量 | 布局国家数 | 国际市场广度 | 布局国家数越多,专利技术面向的国际市场越广泛 | 杨武等[ |
同族专利数 | 国际市场竞争力 | 同族专利数越多,专利技术在国际市场上的竞争力越强 | 朱雪忠等 [ | |
转让次数 | 市场流通性 | 转让次数越多,市场流通性越好 | 罗国立等 [ | |
法律质量 | 有效专利占比 | 专利权稳定性 | 有效专利占比越高,意味着被撤销或宣告无效的情况越少,权利越稳定 | 霍翠婷等[ |
权利要求数量 | 专利权保护范围 | 权利要求数量越多,权利保护范围越广、越坚固 | 杨武等[ | |
专利权人数量 | 专利权维护力量 | 专利权人数量越多,意味着有越多的主体共同参与权利的维持和保护 | 霍翠婷等[ |
表3
中美两国车用锂离子电池专利的综合质量得分"
申请年 | 中国 | 美国 | ||||||
---|---|---|---|---|---|---|---|---|
技术质量 | 市场质量 | 法律质量 | 专利质量 | 技术质量 | 市场质量 | 法律质量 | 专利质量 | |
2000 | 0.12 | 0.09 | 0.22 | 0.17 | 0.68 | 0.62 | 0.33 | 0.66 |
2001 | 0.00 | 0.00 | 0.00 | 0.00 | 0.39 | 0.66 | 0.32 | 0.56 |
2002 | 0.47 | 0.09 | 0.17 | 0.28 | 0.46 | 0.48 | 0.51 | 0.58 |
2003 | 0.21 | 0.15 | 0.19 | 0.22 | 0.93 | 0.49 | 0.44 | 0.74 |
2004 | 0.40 | 0.20 | 0.24 | 0.33 | 0.62 | 0.61 | 0.36 | 0.64 |
2005 | 0.29 | 0.30 | 0.40 | 0.40 | 0.63 | 0.82 | 0.61 | 0.84 |
2006 | 0.28 | 0.27 | 0.40 | 0.38 | 0.52 | 0.54 | 0.54 | 0.65 |
2007 | 0.32 | 0.12 | 0.22 | 0.26 | 0.69 | 0.74 | 0.72 | 0.87 |
2008 | 0.32 | 0.27 | 0.45 | 0.41 | 0.69 | 0.55 | 0.68 | 0.77 |
2009 | 0.26 | 0.18 | 0.28 | 0.29 | 0.64 | 0.55 | 0.65 | 0.74 |
2010 | 0.32 | 0.25 | 0.41 | 0.39 | 0.51 | 0.66 | 0.74 | 0.77 |
2011 | 0.27 | 0.20 | 0.55 | 0.41 | 0.42 | 0.55 | 0.66 | 0.66 |
2012 | 0.29 | 0.24 | 0.46 | 0.40 | 0.34 | 0.54 | 0.65 | 0.62 |
2013 | 0.31 | 0.21 | 0.47 | 0.40 | 0.50 | 0.56 | 0.71 | 0.71 |
2014 | 0.30 | 0.24 | 0.45 | 0.39 | 0.29 | 0.45 | 0.72 | 0.59 |
2015 | 0.26 | 0.18 | 0.45 | 0.35 | 0.32 | 0.54 | 0.69 | 0.63 |
2016 | 0.27 | 0.23 | 0.43 | 0.37 | 0.30 | 0.49 | 0.66 | 0.59 |
2017 | 0.28 | 0.29 | 0.40 | 0.43 | 0.27 | 0.51 | 0.64 | 0.58 |
2018 | 0.27 | 0.21 | 0.44 | 0.52 | 0.27 | 0.47 | 0.66 | 0.57 |
2019 | 0.26 | 0.27 | 0.48 | 0.51 | 0.23 | 0.42 | 0.72 | 0.56 |
2020 | 0.24 | 0.26 | 0.45 | 0.44 | 0.23 | 0.41 | 0.53 | 0.48 |
2021 | 0.22 | 0.21 | 0.42 | 0.41 | 0.20 | 0.38 | 0.45 | 0.42 |
2022 | 0.18 | 0.18 | 0.39 | 0.35 | 0.14 | 0.34 | 0.40 | 0.36 |
[1] | 当好全国改革开放排头兵 不断提高城市核心竞争力[N]. 人民日报, 2014-05-25(1). |
[2] | 凌胜利, 雒景瑜. 拜登政府的"技术联盟": 动因、内容与挑战[J]. 国际论坛, 2021, 23(6): 3-25, 155. DOI: 10.13549/j.cnki.cn11-3959/d.2021.06.001. |
LING S L, LUO J Y. The biden administration's technology alliance: Motivations, content and challenges[J]. International Forum, 2021, 23(6): 3-25, 155. DOI: 10.13549/j.cnki.cn11-3959/d.2021.06.001. | |
[3] | 朱彤. 美欧新能源汽车政策变化对我国的影响与应对[J]. 中国发展观察, 2022(10): 124-128. |
ZHU T. The influence of the policy changes of new energy vehicles in the United States and Europe on China and its countermeasures[J]. China Development Observation, 2022(10): 124-128. | |
[4] | 赵晏强, 李金坡. 基于中国专利的锂电池发展趋势分析[J]. 情报杂志, 2012, 31(1): 35-40, 16. |
ZHAO Y Q, LI J P. Current and development trends of Chinese patents in lithium battery[J]. Journal of Intelligence, 2012, 31(1): 35-40, 16. | |
[5] | 李征, 杨振忠, 王琼, 等. 基于专利情报分析的锂离子电池用低温电解液的发展现状和研究进展[J]. 储能科学与技术, 2024, 13(7): 2317-2326. DOI: 10.19799/j.cnki.2095-4239.2024.0382. |
LI Z, YANG Z Z, WANG Q, et al. Patent intelligence analysis of the research progress in low-temperature electrolytes for Li-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(7): 2317-2326. DOI: 10.19799/j.cnki.2095-4239.2024.0382. | |
[6] | 宋洋, 邓爱科, 陈辉, 等. 全球锂离子电池关键材料专利技术和市场风险与我国发展对策研究[J]. 中国发明与专利, 2024, 21(6): 22-28. |
SONG Y, DENG A K, CHEN H, et al. Patent and market risk analysis of critical materials for lithium-ion batteries and development strategies in China[J]. China Invention & Patent, 2024, 21(6): 22-28. | |
[7] | MALHOTRA A, ZHANG H T, BEUSE M, et al. How do new use environments influence a technology's knowledge trajectory? A patent citation network analysis of lithium-ion battery technology[J]. Research Policy, 2021, 50(9): 104318. DOI: 10.1016/j.respol.2021.104318. |
[8] | AALDERING L J, SONG C H. Tracing the technological development trajectory in post-lithium-ion battery technologies: A patent-based approach[J]. Journal of Cleaner Production, 2019, 241: 118343. DOI: 10.1016/j.jclepro.2019.118343. |
[9] | ZHANG J Q, FAN T, YUAN S, et al. Patent-based technological developments and surfactants application of lithium-ion batteries fire-extinguishing agent[J]. Journal of Energy Chemistry, 2024, 88: 39-63. DOI: 10.1016/j.jechem.2023.08.037. |
[10] | WALI S B, HANNAN M A, KER P J, et al. Grid-connected lithium-ion battery energy storage system towards sustainable energy: A patent landscape analysis and technology updates[J]. Journal of Energy Storage, 2024, 77: 109986. DOI: 10.1016/j.est.2023.109986. |
[11] | 郭青, 戚湧, 高盼军. 基于技术、法律和经济三位一体的专利质量评价及应用研究[J]. 中国发明与专利, 2021, 18(1): 21-29. |
GUO Q, QI Y, GAO P J. Research on evaluation and application of patent quality based on the trinity model of technology quality, legal validity and economic perspective[J]. China Invention & Patent, 2021, 18(1): 21-29. | |
[12] | 万小丽, 朱雪忠. 国际视野下专利质量指标研究的现状与趋势[J]. 情报杂志, 2009, 28(7): 49-54. |
WAN X L, ZHU X Z. Status and trends of patent quality indicator research in international perspective[J]. Journal of Intelligence, 2009, 28(7): 49-54. | |
[13] | LANJOUW J O, SCHANKERMAN M. Patent quality and research productivity: Measuring innovation with multiple indicators[J]. The Economic Journal, 2004, 114(495): 441-465. DOI: 10.1111/j.1468-0297.2004.00216.x. |
[14] | TONG X S, FRAME J D. Measuring national technological performance with patent claims data[J]. Research Policy, 1994, 23(2): 133-141. DOI: 10.1016/0048-7333(94)90050-7. |
[15] | 乔桂银. 专利质量指标体系研究[J]. 江苏科技信息, 2013(13):21-23. DOI:10.3969/j.issn.1004-7530.2013.13.013. |
QIAO G Y. Research on patent quality index system[J]. Jiangsu Science and Technology Information, 2013(13):21-23. DOI:10.3969/j.issn.1004-7530.2013.13.013. | |
[16] | 朱雪忠, 李艳. 我国中药发明专利质量提升路径——基于专利委托代理视角的实证研究[J]. 科学学与科学技术管理, 2021, 42(7): 87-105. |
ZHU X Z, LI Y. The path to improve the quality of traditional Chinese medicine invention patents: An empirical study based on the perspective of patent agency[J]. Science of Science and Management of S & T, 2021, 42(7): 87-105. | |
[17] | 程文银, 李兆辰, 刘生龙, 等. 中国专利质量的三维评价方法及实证分析[J]. 情报理论与实践, 2022, 45(7): 95-101. DOI: 10.16353/j.cnki.1000-7490.2022.07.014. |
CHENG W Y, LI Z C, LIU S L et al. Three-dimensional evaluation method and empirical analysis of China's patent quality[J]. Information Studies (Theory & Application), 2022, 45(7): 95-101. DOI: 10.16353/j.cnki.1000-7490.2022.07.014. | |
[18] | GRIMALDI M, CRICELLI L. Indexes of patent value: A systematic literature review and classification[J]. Knowledge Management Research & Practice, 2020, 18(2): 214-233. DOI: 10.1080/14778238.2019.1638737. |
[19] | 李睿, 周维, 容军凤, 等. 高价值企业专利的被引特征分析——以世界500强企业专利为例[J]. 情报学报, 2015, 34(9): 899-911. |
LI R, ZHOU W, RONG J F, et al. The citation analysis of high value companies patents: A case study of fortune global 500[J]. Journal of the China Society for Scientific and Technical Information, 2015, 34(9): 899-911. | |
[20] | 张杰, 孙超, 翟东升, 等. 基于诉讼专利的专利质量评价方法研究[J]. 科研管理, 2018, 39(5): 138-146. DOI: 10.19571/j.cnki.1000-2995.2018.05.016. |
ZHANG J, SUN C, ZHAI D S, et al. A study of patent quality evaluation method based on litigation patents[J]. Science Research Management, 2018, 39(5): 138-146. DOI: 10.19571/j.cnki.1000-2995.2018.05.016. | |
[21] | 霍翠婷. 企业核心专利判定的方法研究[J]. 情报杂志, 2012, 31(11): 95-99. |
HUO C T. The method for determination of corporation core patents[J]. Journal of Intelligence, 2012, 31(11): 95-99. | |
[22] | 杨武, 孙世强. 关键核心专利与技术锁定耦合驱动研究[J]. 情报杂志, 2023, 42(3): 102-109, 166. |
YANG W, SUN S Q. Coupling drive research on key core patents and technology lock-in[J]. Journal of Intelligence, 2023, 42(3): 102-109, 166. | |
[23] | 罗立国, 赵志浩, 罗丽珍. 核心专利识别指标理论与实证研究[J]. 中国发明与专利, 2020, 17(6): 100-105. |
LUO L G, ZHAO Z H, LUO L Z. Theory and empirical research on core patent identification indicators[J]. China Invention & Patent, 2020, 17(6): 100-105. | |
[24] | 蔡中华, 陈鸿, 马欢. 我国向"一带一路" 沿线国家专利申请质量测度研究[J]. 科学学研究, 2020, 38(7): 1207-1214. DOI: 10.16192/j.cnki.1003-2053.2020.07.007. |
CAI Z H, CHEN H, MA H. The theoretical and empirical measurement on the patent application quality from China to the Belt and Road countries[J]. Studies in Science of Science, 2020, 38(7): 1207-1214. DOI: 10.16192/j.cnki.1003-2053.2020.07.007. | |
[25] | 江长斌, 徐紫琪, 王宏宇, 等. 基于熵权TOPSIS法的高校师德师风类网络舆情风险评估预警研究[J]. 情报科学, 2024, 42(6): 113-120. DOI: 10.13833/j.issn.1007-7634.2024.06.013. |
JIANG C B, XU Z Q, WANG H Y, et al. Risk assessment and early warning of network public opinion related to the ethics and conduct of university faculty based on entropy weight TOPSIS method[J]. Information Science, 2024, 42(6): 113-120. DOI: 10.13833/j.issn.1007-7634.2024.06.013. | |
[26] | MA S C, XU J H, FAN Y. Characteristics and key trends of global electric vehicle technology development: A multi-method patent analysis[J]. Journal of Cleaner Production, 2022, 338: 130502. DOI: 10.1016/j.jclepro.2022.130502. |
[27] | LIU M Y, LUO X W, WANG G B, et al. Intelligent information extraction from government on-site inspection reports of construction projects: A graph-based text mining approach[J]. Advanced Engineering Informatics, 2023, 58: 102163. DOI: 10.1016/j.aei.2023.102163. |
[28] | ZAHOOR A, ZHANG J B, WU D, et al. A systematic study involving patent analysis and theoretical modeling of eco-friendly technologies for electric vehicles and power batteries to ease carbon emission from the transportation industry[J]. Energy Conversion and Management, 2024, 321: 118996. DOI: 10.1016/j.enconman.2024.118996. |
[29] | MARTÍNEZ-ARDILA H, CORREDOR-CLAVIJO A, DEL PILAR ROJAS-CASTELLANOS V, et al. The technology life cycle of Persian lime. A patent based analysis[J]. Heliyon, 2022, 8(11): e11781. DOI: 10.1016/j.heliyon.2022.e11781. |
[30] | 杨武, 杨大飞. 基于专利数据的产业核心技术识别研究——以5G移动通信产业为例[J]. 情报杂志, 2019, 38(3): 39-45, 52. |
YANG W, YANG D F. Research on identification of industrial core technology based on patent data—Taking the field of fifth generation mobile communication industry as an example[J]. Journal of Intelligence, 2019, 38(3): 39-45, 52. | |
[31] | 胡华坤, 李新丽, 薛文东, 等. 基于CiteSpace的锂离子电池用低温电解液知识图谱分析[J]. 储能科学与技术, 2022, 11(1): 379-396. DOI: 10.19799/j.cnki.2095-4239.2021.0295. |
HU H K, LI X L, XUE W D, et al. Knowledge map analysis of a low-temperature electrolyte for lithium-ion battery based on CiteSpace[J]. Energy Storage Science and Technology, 2022, 11(1): 379-396. DOI: 10.19799/j.cnki.2095-4239.2021.0295. | |
[32] | 霍思达, 薛文东, 李新丽, 等. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. DOI: 10.19799/j.cnki.2095-4239.2022.0120. |
HUO S D, XUE W D, LI X L, et al. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace[J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. DOI: 10.19799/j.cnki.2095-4239.2022.0120. | |
[33] | 黄云辉. 锂离子电池: 20世纪最重要的发明之一[J]. 科学通报, 2019, 64(36): 3811-3816. |
HUANG Y H. Lithium-ion battery: One of the most important inventions in the 20th century[J]. Chinese Science Bulletin, 2019, 64(36): 3811-3816. | |
[34] | 高玉李, 王红秋, 黄格省, 等. 全固态锂电池的产业化和技术研究进展[J]. 化工进展, 2024, 43(9): 4767-4778, 5339. DOI: 10.16085/j.issn.1000-6613.2024-0442. |
GAO Y L, WANG H Q, HUANG G X, et al. Research progress and the industrialization of all-solid-state battery[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4767-4778, 5339. DOI: 10.16085/j.issn.1000-6613.2024-0442. |
[1] | 谈秀雯, 李凌. 局部过热下锂电池热失控特性及其热管理研究[J]. 储能科学与技术, 2025, 14(9): 3521-3529. |
[2] | 陈峥, 胡竞元, 赵志刚, 申江卫, 夏雪磊, 魏福星. 双体系混装电池组热特性研究及风冷散热结构优化[J]. 储能科学与技术, 2025, 14(9): 3463-3475. |
[3] | 陈文艳, 贺瑞璘, 常建, 邓永红. 不同形态液态金属电极的储锂机制研究[J]. 储能科学与技术, 2025, 14(9): 3290-3300. |
[4] | 邓拓, 周海平, 刘煜, 刘畅, 李梓恺, 吴孟强. 化学气相沉积法制备硅碳负极的研究进展[J]. 储能科学与技术, 2025, 14(9): 3354-3372. |
[5] | 赵岩, 刘浩, 易宗琳, 李莉, 谢莉婧, 苏方远. FEC与VC在锂离子电池石墨负极界面行为研究[J]. 储能科学与技术, 2025, 14(9): 3249-3258. |
[6] | 林季锦, 刘倩, 曲涛, 李京鲲, 黄东永, 朱晓庆, 巨星. 锂离子电池储能系统浸没液冷的技术经济性分析[J]. 储能科学与技术, 2025, 14(9): 3622-3635. |
[7] | 封居强, 张成知, 陈雨杭. 基于数字孪生的高精度SOC和温度联合估计方法[J]. 储能科学与技术, 2025, 14(9): 3567-3580. |
[8] | 白晓宇, 筵亚静, 张志荣, 孔令丽. 复合石墨锂离子电池性能研究[J]. 储能科学与技术, 2025, 14(9): 3259-3268. |
[9] | 张磊. 锂离子电池储能电站的运行状态监测与评估[J]. 储能科学与技术, 2025, 14(9): 3538-3540. |
[10] | 包新宇, 孔祥栋, 吕桃林, 朱志成, 韩雪冰, 来鑫, 郑岳久, 孙涛. 基于产线大数据的电池内阻预测及快速分选方法[J]. 储能科学与技术, 2025, 14(9): 3541-3551. |
[11] | 杨斌, 杨军, 徐浪, 温浩伟, 刘登锋, 阮殿波. 电容型锂离子电池的球头压痕对其安全性研究[J]. 储能科学与技术, 2025, 14(8): 3090-3099. |
[12] | 张腾, 常国峰. 基于单体特征参数差异的电池组热特性和热一致性研究[J]. 储能科学与技术, 2025, 14(8): 3194-3206. |
[13] | 高蕾, 顾洪汇, 张益明, 黄伟, 陆海燕, 周琳, 顾梅嵘. 超高功率锂离子电池脉冲性能研究[J]. 储能科学与技术, 2025, 14(8): 2942-2949. |
[14] | 徐成善, 孙烨, 杨智凯, 赵明强, 李亚伦, 冯旭宁, 王贺武, 卢兰光, 欧阳明高. 储能锂离子电池系统热失控诱发电弧研究进展[J]. 储能科学与技术, 2025, 14(8): 3037-3050. |
[15] | 李鹏举, 陈晓宇, 谢佳, 沈佳妮, 贺益君. 锂离子电池功率状态预测方法研究进展[J]. 储能科学与技术, 2025, 14(8): 3028-3036. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||