储能科学与技术 ›› 2025, Vol. 14 ›› Issue (11): 4184-4198.doi: 10.19799/j.cnki.2095-4239.2025.0496

• 储能材料与器件 • 上一篇    下一篇

钠离子电池NASICON型磷酸盐正极材料研究进展

金宇玄1(), 周权1(), 周琳2(), 高腾1, 李子杰1, 王琰2, 卢俊龙1   

  1. 1.长三角物理研究中心,江苏 溧阳 213300
    2.永康市高新技术产业研究院有限公司,浙江 永康 321300
  • 收稿日期:2025-05-27 修回日期:2025-06-16 出版日期:2025-11-28 发布日期:2025-11-24
  • 通讯作者: 周权,周琳 E-mail:george_jyx@163.com;zhouquan@ioply.cn;lzhou@iphy.ac.cn
  • 作者简介:金宇玄(1996—),男,硕士,工程师,研究方向为钠离子电池正极材料,E-mail:george_jyx@163.com
  • 基金资助:
    江苏中科智慧新能源研究中心建设(BM2022205);江苏省先进动力和储能电池技术创新中心(BM2024002┫项目)

Research progress of NASICON-type phosphate cathode materials for sodium-ion batteries

Yuxuan JIN1(), Quan ZHOU1(), Lin ZHOU2(), Teng GAO1, Zijie LI1, Yan WANG2, Junlong LU1   

  1. 1.Yangtze River Delta Physics Research Center, Liyang 213300, Jiangsu, China
    2.Yongkang High-tech Industrial Research Institute Co. , Ltd. , Yongkang 321300, Zhejiang, China
  • Received:2025-05-27 Revised:2025-06-16 Online:2025-11-28 Published:2025-11-24
  • Contact: Quan ZHOU, Lin ZHOU E-mail:george_jyx@163.com;zhouquan@ioply.cn;lzhou@iphy.ac.cn

摘要:

NASICON型聚阴离子正极材料作为最具潜力的钠电正极材料,凭借优异的循环性能和倍率性能得到产业界的广泛关注,其具有电压相对较高、制备工艺简单、反应动力学优异及热力学稳定等诸多优势,目前部分聚阴离子磷酸盐材料已经规模化生产,但一些磷酸盐材料的技术瓶颈阻碍了材料的商业化应用。本文首先根据不同过渡金属元素的特点对该类正极材料进行分类,说明了NASICON型磷酸盐正极材料面临着成本高昂、框架结构不稳定、环境不友好等诸多挑战,从材料构效关系、原材料成本、元素掺杂和界面调控等方面出发,介绍材料特性、综述研究进展;分析表明,激活更多电子反应对、优化材料反应动力学,以及开发更具性价比的正极材料是NASICON型磷酸盐材料的主要发展方向,而在Ti、V、Cr、Mn、Fe等过渡金属元素中,Mn基磷酸盐的高电压和低成本的优势在NASICON型磷酸盐材料中展现出更突出的价值,针对Mn基材料在循环过程中容易引发姜泰勒效应而导致材料发生晶格畸变及容量衰减,本文综述了Mn基磷酸盐材料的优化方向,助推 NASICON型聚阴离子正极材料的商业化进程。

关键词: 钠离子电池, 正极材料, NASICON结构, 磷酸盐

Abstract:

As the most promising candidates for sodium-ion batteries, NASICON-type polyanionic cathode materials have attracted significant industrial attention due to their excellent cycle and rate performances. These materials offer relatively high voltage, simple preparation, superior reaction kinetics, and thermodynamic stability. Although some polyanionic phosphate materials are already in large-scale production, the commercialization of certain phosphates remains limited by technical bottlenecks. This paper categorizes these cathodes based on their transition metal elements and discusses their key challenges, including high cost, unstable frameworks, and environmental concerns. This paper highlights research progress in areas such as material structure-activity relationships, raw material costs, element doping, and interface regulation. Notable advances include activating more electron reaction pairs, optimizing reaction kinetics, and developing cost-effective materials. Among the transition metals, such as Ti, V, Cr, Mn, and Fe, Mn-based phosphates stand out for their high voltage and low cost. However, the Jahn-Teller effect during cycling causes lattice distortion and capacity fading in Mn-based materials. Moreover, this work summarizes the optimization strategies for Mn-based phosphates aimed at accelerating the commercialization of NASICON-type polyanionic cathodes.

Key words: sodium-ion battery, cathode material, NASICON structure, phosphate

中图分类号: