[1] |
LI Y L, WEI Y F, ZHU F Q, et al. The path enabling storage of renewable energy toward carbon neutralization in China[J]. eTransportation, 2023, 16: 100226. DOI: 10.1016/j.etran. 2023. 100226.
|
[2] |
袁帅, 崔煜杰, 程东浩, 等. 2017—2024年全球电化学储能电站火灾爆炸事故统计分析[J]. 储能科学与技术, 2025, 14(6): 2362-2376. DOI: 10.19799/j.cnki.2095-4239.2024.1151.
|
|
YUAN S, CUI Y J, CHENG D H, et al. Statistical analysis of fire and explosion accidents in electrochemical energy-storage stations from 2017 to 2024 throughout the world[J]. Energy Storage Science and Technology, 2025, 14(6): 2362-2376. DOI: 10.19799/j.cnki.2095-4239.2024.1151.
|
[3] |
张少刚, 张润箫, 聂细亮, 等. 储能电站预制舱磷酸铁锂电池热失控燃爆危害仿真研究[J/OL]. 储能科学与技术, 2025: 1-13. (2025-05-18). https://link.cnki.net/doi/10.19799/j.cnki.2095-4239.2025.0340.
|
|
ZHANG S G, ZHANG R X, NIE X L, et al. Simulation study on thermal runaway explosion hazard of lithium iron phosphate battery in prefabricated cabin of energy storage power station[J/OL]. Energy Storage Science and Technology, 2025: 1-13. (2025-05-18). https://link.cnki.net/doi/10.19799/j.cnki.2095-4239. 2025. 0340.
|
[4] |
FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. DOI: 10. 1016/j.joule.2020.02.010.
|
[5] |
WANG S P, SONG L F, LI C H, et al. Experimental study of gas production and flame behavior induced by the thermal runaway of 280 Ah lithium iron phosphate battery[J]. Journal of Energy Storage, 2023, 74: 109368. DOI: 10.1016/j.est.2023.109368.
|
[6] |
XU C S, FAN Z W, ZHANG M Q, et al. A comparative study of the venting gas of lithium-ion batteries during thermal runaway triggered by various methods[J]. Cell Reports Physical Science, 2023, 4(12): 101705. DOI: 10.1016/j.xcrp.2023.101705.
|
[7] |
WANG H B, XU H, ZHANG Z L, et al. Fire and explosion characteristics of vent gas from lithium-ion batteries after thermal runaway: A comparative study[J]. eTransportation, 2022, 13: 100190. DOI: 10.1016/j.etran.2022.100190.
|
[8] |
WANG Q Z, WANG H B, XU C S, et al. Multidimensional fire propagation of lithium-ion phosphate batteries for energy storage[J]. eTransportation, 2024, 20: 100328. DOI: 10.1016/j.etran. 2024. 100328.
|
[9] |
XU W Q, WU X G, LI Y L, et al. A comprehensive review of DC arc faults and their mechanisms, detection, early warning strategies, and protection in battery systems[J]. Renewable and Sustainable Energy Reviews, 2023, 186: 113674. DOI: 10.1016/j.rser.2023.113674.
|
[10] |
黄怀宇, 黄思林, 赵荣超, 等. 磷酸铁锂电池铝塑膜壳体绝缘失效触发热失控特性实验研究[J]. 储能科学与技术, 2025, 14(2): 613-623. DOI: 10.19799/j.cnki.2095-4239.2024.0869.
|
|
HUANG H Y, HUANG S L, ZHAO R C, et al. Experimental study on thermal runaway characteristics triggered by insulation failure of aluminum-plastic film shell of lithium iron phosphate battery[J]. Energy Storage Science and Technology, 2025, 14(2): 613-623. DOI: 10.19799/j.cnki.2095-4239.2024.0869.
|
[11] |
牛腾腾, 黄人杰, 渠展展, 等. 1500 V锂离子电池簇电场分布仿真及绝缘风险分析[J]. 中国电机工程学报, 2024, 44(1): 377-385. DOI: 10.13334/j.0258-8013.pcsee.222335.
|
|
NIU T T, HUANG R J, QU Z Z, et al. Electric field distribution simulation and insulation risk analysis of 1 500 V lithium-ion battery cluster[J]. Proceedings of the CSEE, 2024, 44(1): 377-385. DOI: 10.13334/j.0258-8013.pcsee.222335.
|
[12] |
CHEN H, LIU Y W, QU Z Z, et al. Experimental research on thermal runaway characterization and mechanism induced by the shell insulation failure for LiFePO4 Lithium-ion battery[J]. Journal of Energy Storage, 2024, 84: 110735. DOI: 10.1016/j.est. 2024. 110735.
|
[13] |
LI W F, XUE Y, FENG X B, et al. Enhancing understanding of particle emissions from lithium-ion traction batteries during thermal runaway: An overview and challenges[J]. eTransportation, 2024, 22: 100354. DOI: 10.1016/j.etran. 2024. 100354.
|
[14] |
WANG H B, WANG Q Z, JIN C Y, et al. Detailed characterization of particle emissions due to thermal failure of batteries with different cathodes[J]. Journal of Hazardous Materials, 2023, 458: 131646. DOI: 10.1016/j.jhazmat.2023.131646.
|
[15] |
ZHANG Y J, WANG H W, LI W F, et al. Size distribution and elemental composition of vent particles from abused prismatic Ni-rich automotive lithium-ion batteries[J]. Journal of Energy Storage, 2019, 26: 100991. DOI: 10.1016/j.est.2019.100991.
|
[16] |
ESSL C, GOLUBKOV A W, GASSER E, et al. Comprehensive hazard analysis of failing automotive lithium-ion batteries in overtemperature experiments[J]. Batteries, 2020, 6(2): 30. DOI: 10.3390/batteries6020030.
|
[17] |
WANG Y, WANG H W, ZHANG Y J, et al. Thermal oxidation characteristics for smoke particles from an abused prismatic Li(Ni0.6Co0.2Mn0.2)O2 battery[J]. Journal of Energy Storage, 2021, 39: 102639. DOI: 10.1016/j.est.2021.102639.
|
[18] |
WANG G Q, KONG D P, PING P, et al. Revealing particle venting of lithium-ion batteries during thermal runaway: A multi-scale model toward multiphase process[J]. eTransportation, 2023, 16: 100237. DOI: 10.1016/j.etran.2023.100237.
|
[19] |
LI C, WANG H W, LI Y L, et al. Venting particle-induced arc of lithium-ion batteries during the thermal runaway[J]. eTransportation, 2024, 22: 100350. DOI: 10.1016/j.etran. 2024. 100350.
|
[20] |
ZHANG Y, PING P, REN X T, et al. Characteristics and generation mechanism of ejecta-induced arc for lithium-ion battery during thermal runaway[J]. eTransportation, 2025, 24: 100429. DOI: 10.1016/j.etran.2025.100429.
|
[21] |
SHEN H J, WANG H W, LI M H, et al. Thermal runaway characteristics and gas composition analysis of lithium-ion batteries with different LFP and NCM cathode materials under inert atmosphere[J]. Electronics, 2023, 12(7): 1603. DOI: 10. 3390/electronics12071603.
|
[22] |
WASSILIADIS N, STEINSTRÄTER M, SCHREIBER M, et al. Quantifying the state of the art of electric powertrains in battery electric vehicles: Range, efficiency, and lifetime from component to system level of the Volkswagen ID.3[J]. eTransportation, 2022, 12: 100167. DOI: 10.1016/j.etran.2022.100167.
|
[23] |
AHN J B, LEE J H, RYOO H J, et al. PCA-based arc detection algorithm for DC series arc detection in PV system[C]//2021 24th International Conference on Electrical Machines and Systems (ICEMS). October 31-November 3, 2021, Gyeongju, Korea, Republic of. IEEE, 2021: 258-261.
|
[24] |
XU W Q, ZHOU K, LI Y L, et al. Study on the evolution laws and induced failure of series arcs in cylindrical lithium-ion batteries[J]. Applied Energy, 2025, 377: 124562. DOI: 10.1016/j.apenergy. 2024.124562.
|
[25] |
XU W Q, ZHOU K, WANG H W, et al. Experimental and modeling study of arc fault induced thermal runaway in prismatic lithium-ion batteries[J]. Batteries, 2024, 10(8): 269. DOI: 10.3390/batteries-10080269.
|
[26] |
PEIYAN Q I, JIE Z M, JIANG D, et al. Combustion characteristics of lithium-iron-phosphate batteries with different combustion states[J]. eTransportation, 2022, 11: 100148. DOI: 10.1016/j.etran. 2021.100148.
|
[27] |
MAO B B, LIU C Q, YANG K, et al. Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110717. DOI: 10.1016/j.rser.2021.110717.
|
[28] |
GONG Z H, SUN J L, WANG H B, et al. Influence of different causes on thermal runaway characteristic of LiFePO4 battery[J]. Journal of Energy Storage, 2024, 93: 112411. DOI: 10.1016/j.est. 2024.112411.
|
[29] |
XU W Q, ZHOU K, WANG H W, et al. Series arc-induced internal short circuit leading to thermal runaway in lithium-ion battery[J]. Energy, 2024, 308: 132999. DOI: 10.1016/j.energy.2024.132999.
|
[30] |
XU W Q, LU L G, ZHOU K, et al. Experimental and model analysis of the thermoelectric characteristics of serial arc in prismatic lithium-ion batteries[J]. IET Energy Systems Integration, 2024, 6(S1): 754-764. DOI: 10.1049/esi2.12162.
|
[31] |
和志文. 电击穿电弧形成过程及模型研究[D]. 温州: 温州大学, 2021. DOI: 10.27781/d.cnki.gwzdx.2021.000195.
|
|
HE Z W. Study on the forming process and model of electric breakdown arc[D]. Wenzhou: Wenzhou University, 2021. DOI: 10.27781/d.cnki.gwzdx.2021.000195.
|
[32] |
RAGALLER K, EGLI W, BRAND K P. Dielectric recovery of an axially blown SF6-Arc after current zero: Part II-theoretical investigations[J]. IEEE Transactions on Plasma Science, 1982, 10(3): 154-162. DOI: 10.1109/TPS.1982.4316162.
|
[33] |
NIEMEYER L. Evaporation dominated high current arcs in narrow channels[J]. IEEE Transactions on Power Apparatus and Systems, 1978, PAS-97(3): 950-958. DOI: 10.1109/TPAS. 1978. 354568.
|
[34] |
BEILIS I I, KEIDAR M, BOXMAN R L, et al. Theoretical study of plasma expansion in a magnetic field in a disk anode vacuum arc[J]. Journal of Applied Physics, 1998, 83(2): 709-717. DOI: 10. 1063/1.366742.
|
[35] |
MERCK W F H, ZATELEPIN V N. The gas dynamics of current-limiting devices during immobility time[J]. IEEE Transactions on Plasma Science, 1997, 25(5): 947-953. DOI: 10.1109/27.649602.
|
[36] |
ENAMI Y, SAKATA M. Simulation of arc in molded-case circuit breaker with metal vapor and moving electrode[C]//2013 2nd International Conference on Electric Power Equipment-Switching Technology (ICEPE-ST). October 20-23, 2013, Matsue, Japan. IEEE, 2013: 1-4. DOI: 10.1109/ICEPE-ST.2013.6804390.
|
[37] |
DONG C Y, GAO B, LI Y L, et al. Experimental and model analysis of the thermal and electrical phenomenon of arc faults on the electrode pole of lithium-ion batteries[J]. Batteries, 2024, 10(4): 127. DOI: 10.3390/batteries10040127.
|