储能科学与技术 ›› 2025, Vol. 14 ›› Issue (8): 3037-3050.doi: 10.19799/j.cnki.2095-4239.2025.0552

• 短时高频高功率储能专辑 • 上一篇    

储能锂离子电池系统热失控诱发电弧研究进展

徐成善1,2(), 孙烨3, 杨智凯4, 赵明强5,6, 李亚伦7, 冯旭宁1,2, 王贺武1,2, 卢兰光1,2(), 欧阳明高1,2   

  1. 1.清华大学车辆与运载学院,北京 100084
    2.清华大学智能绿色车辆与交通全国重点实验室,北京 100084
    3.西安科技大学安全科学与工程学院,陕西 西安 710054
    4.中国农业大学工 学院,北京 100083
    5.四川赛科检测技术有限公司,四川 宜宾 644000
    6.国家市场监督管理总局重点实验室(储能与动力电池安全),四川 宜宾 644000
    7.北京航空航天大学交通科学与工程学院,北京 100191
  • 收稿日期:2025-06-11 修回日期:2025-07-01 出版日期:2025-08-28 发布日期:2025-08-18
  • 通讯作者: 卢兰光 E-mail:xcs_pcg@mail.tsinghua.edu.cn;lulg@tsinghua.edu.cn
  • 作者简介:徐成善(1993—),男,博士,助理研究员,研究方向为动力及储能电池系统失效机理、建模和安全设计,E-mail:xcs_pcg@mail.tsinghua.edu.cn
  • 基金资助:
    国家重点研发计划“储能与智能电网技术”重点专项(2022YFB2404800);国家重点研发计划战略性科技创新合作项目(2022YFE0207900);国家自然科学基金(52422609);清华大学智能绿色车辆与交通全国重点实验室自主研究课题(ZZ-PY-20250109)

Research progress on arc induced by thermal runaway in lithium-ion battery systems for energy storage

Chengshan XU1,2(), Ye SUN3, Zhikai YANG4, Mingqiang ZHAO5,6, Yalun LI7, Xuning FENG1,2, Hewu WANG1,2, Languang LU1,2(), Minggao OUYANG1,2   

  1. 1.School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
    2.State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing 100084, China
    3.School of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
    4.College of Engineering, China Agricultural University, Beijing 100083, China
    5.Sichuan SEVC Testing Technology Co. , Ltd. , Yibin 644000, Sichuan, China
    6.Key Laboratory of Energy Storage and Power Battery Safety, State Administration for Market Regulation, Yibin 644000, Sichuan, China
    7.School of Transportation Science and Engineering, Beihang University, Beijing 100191, China
  • Received:2025-06-11 Revised:2025-07-01 Online:2025-08-28 Published:2025-08-18
  • Contact: Languang LU E-mail:xcs_pcg@mail.tsinghua.edu.cn;lulg@tsinghua.edu.cn

摘要:

在全球能源转型加速推进的背景下,大规模储能电站的安全运行面临严峻挑战,其中由热失控诱发的电弧故障因其高温、高能量特性,成为了加剧火灾爆炸风险的核心致灾因素。本文回顾了近年来对储能系统电弧形成机理以及电弧对电池热失控影响的相关研究,全面综述了储能电池系统中电池热失控特性与各类电弧故障之间的联系,系统总结了储能系统中电弧形成的多路径耦合机理:当电气安全间距小于电弧临界击穿距离时,高温或机械破坏引发的绝缘失效可导致气体介质放电;热失控喷发的高温气体、颗粒物、电解液可显著降低绝缘强度,改变局部介质环境;电连接点松动或化学腐蚀引发的结构劣化会导致绝缘破损并演化为持续电弧。但目前电弧诱发机制研究仍存在局限性:发生方式以喷发物为介质触发为主,触发位置发生在电池安全阀和极柱上,对电弧发生机理和以电解液为介质触发等研究不足。在电池电弧仿真领域,基于磁流体动力学的电弧多物理场模型虽能表征电弧稳定燃烧后的温度场、磁场与流场的耦合特征,但仍难以准确模拟热失控过程中电弧动态触发行为,因此,急需发展融合“热-电-力-化学”多场耦合的智能仿真模型,为储能系统电弧灾害防控提供理论支撑与技术思路。本文旨在加深对储能电池系统电弧发生特征理解,并为提高系统电气安全提供思路,促进储能系统的高安全性发展。

关键词: 储能系统, 锂离子电池, 热失控, 电弧, 诱发机制

Abstract:

Amidst the rapid global energy transition, the safe operation of large-scale energy storage stations faces severe challenges. Thermal runaway (TR)-induced arc faults—characterized by ultrahigh temperatures and energy density—have emerged as a critical factor exacerbating fire and explosion risks. This review examines recent advances on the arc formation mechanisms in energy storage batteries and the impact of arcing on TR propagation. The relationship between the TR characteristics and different types of arc ignition pathways is summarized. Three multipath coupling mechanisms driving arc formation are methodically analyzed. Insulation failure caused by thermal/mechanical stress reduces the safe clearance below the critical breakdown distance, triggering direct contact of or gaseous dielectric breakdown. Compared to air, TR-ejected particulates and electrolyte vapors degrade the insulation strength by 50%—80%. Structural degradation during prolonged operation evolves into persistent arcing through deterioration of the insulation. Current research on arc initiation mechanisms still has limitations: the primary mode of occurrence is triggered by ejected materials, with the initiation location predominantly at the battery safety vent and terminal posts. There is insufficient research on the arc initiation mechanism and on triggering mediated by electrolyte. Although magnetohydrodynamic (MHD) simulations characterize the coupled features of thetemperature, magnetic, and flow fields during stable arcing, they inadequately resolve dynamic arc initiation during TR cascades. Therefore, an integrated "thermal-electrical-mechanical-chemical" multi-physical field model is required for simulating transient arcing behavior under TR conditions to establish a theoretical foundation for mitigating arcing hazards in energy storage systems. This paper aims to deepen the understanding of the arc occurrence characteristics in energy storage battery systems, provide ideas for improving the electrical safety of the systems, and promote the high-safety development of energy storage systems.

Key words: energy storage system, lithium-ion battery, thermal runaway, electric arc, multiphysics coupling

中图分类号: