[1] 钱钢粮. 西藏水电开发与生态环境保护[J]. 水力发电, 2019, 45(2):6-10. QIAN G L. Hydropower development and environmental protection in Tibet autonomous region[J]. Water Power, 2019, 45(2):6-10.
[2] 胡尧, 李子璇, 李勇, 等. 浅析西藏地区可再生能源开发利用现状及未来发展[J]. 太阳能, 2017(8):11-13. HU Y, LI Z X, LI Y, et al. A brief analysis of the present situation and future development of renewable energy development and utilization in Tibet[J]. Solar Energy, 2017(8):11-13.
[3] 白树华, 卢继平. 西藏高原的气候环境对风力发电的影响分析[J]. 电力建设, 2006, 27(11):37-40. BAI S H, LU J P. Analysis on influence of Tibet high plateau climate on wind power generation[J]. Electric Power Construction, 2006, 27(11):37-40.
[4] 李玉平, 徐玉杰, 李斌, 等. 跨临界二氧化碳储能系统研究[J]. 中国电机工程学报, 2018, 38(21):6367-6374. LI Y P, XU Y J, LI B, et al. Research on trans-critical carbon dioxide energy storage system[J]. Proceedings of the CSEE, 2018, 38(21):6367-6374.
[5] CHEN H S, CONG T N, YANG W, et al. Progress in electrical energy storage system:A critical review[J]. Progress in Natural Science, 2009, 19(3):291-312.
[6] ZHANG Y, XU Y J, GUO H, et al. A hybrid energy storage system with optimized operating strategy for mitigating wind power fluctuations[J]. Renewable Energy, 2018, 125:121-132.
[7] 杨勇, 郭苏, 刘群明, 等. 风电-CSP联合发电系统优化运行研究[J]. 中国电机工程学报, 2018, 38(S1):151-157. YANG Y, GUO S, LIU Q M, et al. Research on optimization operation for wind-CSP hybrid power generation system[J]. Proceedings of the CSEE, 2018, 38(S1):151-157.
[8] CHAUHAN A, SAINI R P. A review on integrated renewable energy system based power generation for stand-alone applications:confgurations, storage options, sizing methodologies and control[J]. Renewable and Sustainable Energy Reviews, 2014, 38(5):99-120.
[9] 于东霞, 张建华, 王晓燕, 等. 并网型风光储互补发电系统容量优化配置[J]. 电力系统及其自动化学报, DOI:10.19635/j.cnki.csuepsa.000127. YU D X, ZHANG J H, WANG X Y, et al. Optimization of system capacity in grid-connected wind/PV/storage hybrid system[J].Proceedings of the CSU-EPSA, DOI:10.19635/j.cnki.csu-epsa.000127
[10] 张志文, 范威, 刘军, 等. 偏远山区风光水储互补发电系统容量优化配置[J]. 电源学报, 2018, 16(5):138-146. ZHANG Z W, FAN W, LIU J, et al. Optimal capacity confguration of windsolar-water-battery complementary power generation system in remote mountainous areas[J]. Journal of Power Supply, 2018, 16(5):138-146.
[11] 黄弦超. 计及可控负荷的独立微网分布式电源容量优化[J]. 中国电机工程学报, 2018, 38(7):1962-1970. WANG X C. Capacity optimization of distributed generation for standalone microgrid considering controllable load[J]. Proceedings of the CSEE, 2018, 38(7):1962-1970.
[12] 李冰, 石建磊, 张帆, 等. 基于多电源联合系统的大规模风光消纳协调控制策略[J]. 智能电网, 2014, 2(2):15-21. LI B, SHI J L, ZHANG F, et al. A dispatch strategy for large-scale wind/photovoltaic power accommodation based on multi-generator system[J]. Smart Grid, 2014, 2(2):15-21.
[13] 何璇. 高寒地区槽式太阳能集热器与CO2空气源热泵复合供暖系统的研究[D]. 成都:西南交通大学, 2018. HE X. Research of combining parabolic trough collectors and CO2 air-source heat pump heating system in alpine region[D]. Chengdu:Southwest Jiaotong University, 2018.
[14] 罗继杰, 吉劼, 倪龙, 等. 基于槽式太阳能供暖技术的工程实例分析[J]. 暖通空调, 2016, 46(10):112-116. LUO J J, JI J, NI L, et al. Engineering analysis based on parabolic trough solar heating technology[J]. Heating Ventilating & Air Conditioning, 2016, 46(10):112-116.
[15] SAMOUI M, ABDELKAFI A, KRICHEN L. Optimal sizing of stand-alone photovoltaic/wind/hydrogen hybrid system supplying a desalination unit[J]. 2015, 120:263-276.
[16] 李咸善, 方婧, 郭诗书, 等. 基于灵敏度分析的并网型微电网容量优化配置[J]. 电力系统保护与控制, 2018, 46(23):8-17. LI X S, FANG J, GUO S S, et al. Capacity sizing optimal for gridconnected micro-grid based on sensitivity analysis[J]. Power System Protection and Control, 2018, 46(23):8-17.
[17] 王志峰. 太阳能热发电站设计[M]. 北京:化学工业出版社, 2014. WANG Z F. Design of solar thermal power plant[M]. Beijing:Chemical Industry Press, 2014.
[18] 张雅文. 太阳能电站双罐式熔盐蓄热系统的优化设计及研究[D]. 武汉:华中科技大学, 2012. ZHANG Y W. Study and optimal design on two-tank molten salt heat storage system in solar power pants[D]. Wuhan:Huazhong University of Science and Technology, 2012.
[19] ZAKERI B, SYRI S. Electrical energy storage systems:A comparative life cycle cost analysis[J]. Renewable and Sustainable Energy Reviews, 2015, 42(C):569-596.
[20] DING J, XU Y J, CHEN H S, et al. Value and economic estimation model for grid-scale energy storage in monopoly power markets[J]. Applied Energy, 2019, 240:986-1002.
[21] YANG H X, ZHOU W, LOU C Z. Optimal design and technoeconomic analysis of a hybrid solar-wind power generation system[J]. Applied Energy, 2009, 86(2):163-169.
[22] GUINOT B, CHAMPEL B, MONTIGNAC F, et al. Techno-economic study of a PV-hydrogen-battery hybrid system for off-grid power supply:impact of performances' ageing on optimal system sizing and competitiveness[J]. Hydrogen Energy, 2015, 40(1):623-632.
[23] BRKA A. Optimisation of stand-alone hydrogen-based renewable energy systems using intelligent techniques[D]. Australia:Edith Cowan University, 2015.
[24] 雷英杰, 张善文. MATLAB遗传算法工具箱及应用[M]. 西安:电子科技大学出版社, 2014. LEI Y J, ZHANG S W. MATLAB genetic algorithm toolbox and its application[M]. Xi'an:University of Electronic Science and Technology Press, 2004.
[25] 中华人民共和国住房和城乡建设部. 民用建筑供暖通风与空气调节设计规范:GB 50019-2003[S]. 北京:中国建筑工业出版社, 2012. Ministry of Housing and Urban-Rural Construction of the People's Republic of China. Design code for heating ventilation and air conditioning of civil buildings:GB 50019-2003[S]. Beijing:China Architecture & Building Press, 2012.
[26] 谭雅倩. 海水抽水蓄能系统特性与优化研究[D]. 北京:中国科学院大学, 2017. TAN Y Q. System characteristic and optimization study of seawater pumped hydro energy storage[D]. Beijing:University of Chinese Academy of Sciences, 2017.
[27] JENKINS D P, FLETCHER J, KANE D. Lifetime prediction and sizing of lead-acid batteries for microgeneration storage applications[J]. Renewable Power Generation Iet, 2007, 2(3):191-200.
[28] ROUHOLAMINI M, MOHAMMADIAN M. Heuristic-based power management of a grid-connected hybrid energy system combined with hydrogen storage[J]. Renewable Energy, 2016, 96:354-365. |