Energy Storage Science and Technology ›› 2017, Vol. 6 ›› Issue (5): 1076-1083.doi: 10.12028/j.issn.2095-4239.2017.0059
Previous Articles Next Articles
WANG Chao1, DAI Xingjian2, WANG Yong2, LI Xi1, ZHONG Guobin1
Received:
2017-05-16
Revised:
2017-06-26
Online:
2017-09-01
Published:
2017-09-01
WANG Chao1, DAI Xingjian2, WANG Yong2, LI Xi1, ZHONG Guobin1. Research progress of energy storage composite flywheel[J]. Energy Storage Science and Technology, 2017, 6(5): 1076-1083.
[1] KOUSKSOU T, BRUEL P, JAMIL A, et al. Energy storage: Applications and challenges[J]. Solar Energy Materials & Solar Cells, 2014, 120: 59-80. [2] BOICEA V A. Energy storage technologies: The past and the present[J]. Proceedings of the IEEE, 2014, 102(11): 1777-1794. [3] GENTA G. Kinetic energy storage: Theory and practice of advanced flywheel systems[M]. Butterworth-Heinemann Ltd., 1985. [4] DOUCETTE R T, MCCULLOCH M D. A comparison of high-speed flywheels, batteries, and ultracapacitors on the bases of cost and fuel economy as the energy storage system in a fuel cell based hybrid electric vehicle[J]. Journal of Power Sources, 2011, 196: 1163-1170. [5] 张力, 张恒. 复合材料飞轮研究进展[J]. 兵器材料科学与工程, 2001, 24(5): 63-65. ZHANG Li,ZHANG Heng. Progress in study of flywheels made of composites[J]. Ordnance Material Science and Engineering, 2001, 24(5): 63-65. [6] 李文超, 沈祖培. 复合材料飞轮结构与储能密度[J]. 太阳能学报, 2001, 22(1): 96-101. LI Wenchao,SHEN Zupei. Composite material flywheel structure and energy-storing density[J]. Acta Energiae Solaris Sinica, 2001, 22(1): 96-101. [7] 戴兴建, 李奕良, 于涵. 高储能密度飞轮结构设计方法[J]. 清华大学学报(自然科学版), 2008, 48(3): 378-381. DAI Xingjian, LI Yiliang, YU Han. Design of high specific energy density flywheel[J]. Journal of Tsinghua University (Science and Technology), 2008, 48(3): 378-381. [8] TANG J, ZHANG Y, GE S S, et al. Hollow interference fitted multi-ring composite rotor of the superconducting attitude control and energy storage flywheel[J]. Journal of Reinforced Plastics & Composites, 2013, 32(12): 881-897. [9] WEN S. Analysis of maximum radial stress location of composite energy storage flywheel rotor[J]. Archive of Applied Mechanics, 2014, 84(7): 1007-1013. [10] 秦勇, 夏源明, 毛天祥. 纤维束张紧力缠绕复合材料飞轮初应力的三维数值分析[J]. 复合材料学报, 2005, 22(4): 149-155. QIN Y, XIA Y, MAO T. 3D numerical analysis of initial stress of composite flywheel fabricated by filament tension winding[J]. Acta Materiae Compositae Sinica, 2005, 22(4): 149-155. [11] PORTNOV G G. Handbook of composites. Structure and design. vol. 2. Composite flywheels[M]. New York: Elsevier, 1989: 532-582. [12] DETERESA S J. Materials for advanced flywheel energy storage devices[J]. Mrs Bulletin, 1999, 24(11): 51-56. [13] MORGANTHALER G F, BONK S P. “Composite flywheel stress analysis and material study”[C]//Proc. 12th Natl. SAMPE Symp., Soc. for Advancement of Materials and Process Energ., Covina, 1967: 5. [14] RANTA M A. On the optimum shape of a rotating disk of any isotropic material[J]. International Journal of Solids & Structures, 1969, 5(11): 1247-1257. [15] ARNOLD S M, SALEEB A F, AL-ZOUBI N R. Deformation and life analysis of composite flywheel disk systems[J]. Composites Part B: Engineering, 2002, 33(6): 433-459. [16] 秦勇, 夏源明, 毛天祥. 纤维束张紧力缠绕复合材料飞轮的预应力简化分析[J]. 复合材料学报, 2003, 20(6): 87-91. QIN Yong, XIA Yuanming, MAO Tianxiang. Simplified initial stress analysis of composite flywheel in tension winding[J]. Acta Materiae Compositae Sinica, 2003, 20(6): 87-91. [17] 秦勇, 夏源明, 毛天祥. 计及复合材料飞轮内孔卸载影响的多厚环套装的简化分析[J]. 复合材料学报, 2004, 21(2): 117-122. QIN Yong, XIA Yuanming, MAO Tianxiang. Simplified analyses of multi-ring pressfit of composite flywheel fabricated by tension winding considering the unload of inner hole[J]. Acta Materiae Compositae Sinica, 2004, 21(2): 117-122. [18] 秦勇, 夏源明, 毛天祥. 多环环间混杂复合材料飞轮离心应力分析[J]. 复合材料学报, 2004, 21(4): 157-161. QIN Yong, XIA Yuanming, MAO Tianxiang. Analyses of the centrifugal stress of multi-ring intermixing composite flywheel[J]. Acta Materiae Compositae Sinica, 2004, 21(4): 157-161. [19] 秦勇, 王硕桂, 夏源明, 等. 复合材料飞轮破坏转速的算法和高速旋转破坏实验[J]. 复合材料学报, 2005, 22(4): 112-117. QIN Yong, WANG Shuogui, XIA Yuanming, et al. Methods of calculating the failure rotating speed and failure experiment of composite flywheel[J]. Acta Materiae Compositae Sinica, 2005, 22(4): 112-117. [20] HA S K, KIM D J, SUNG T H. Optimum design of multi-ring composite flywheel rotor using a modified generalized plane strain assumption[J]. International Journal of Mechanical Sciences, 2001, 43(4): 993-1007. [21] HA S K, KIM M H, HAN S C, et al. Design and spin test of a hybrid composite flywheel rotor with a split type hub[J]. Journal of Composite Materials, 2006, 40(23): 2113-2130. [22] HA S K, KIM J H, HAN Y H. Design of a hybrid composite flywheel multi-rim rotor system using geometric scaling factors[J]. Journal of Composite Materials, 2008, 42(8): 771-785. [23] HA S K, HAN H H, HAN Y H. Design and manufacture of a composite flywheel press-fit multi-rim rotor[J]. Journal of Reinforced Plastics & Composites, 2008, 27(9): 953-965. [24] HA S K, KIM S J, NASIR S U, et al. Design optimization and fabrication of a hybrid composite flywheel rotor[J]. Composite Structures, 2012, 94(11): 3290-3299. [25] KIM S J, HAYAT K, NASIR S U, et al. Design and fabrication of hybrid composite hubs for a multi-rim flywheel energy storage system[J]. Composite Structures, 2014, 107(1): 19-29. [26] PORTNOV G G, BAKIS C E, EMERSON R P. Some aspects of designing multirim composite flywheels[J]. Mechanics of Composite Materials, 2004, 40(5): 397-408. [27] CHEN J, YASSER G, ROYALL B. Quasi-static behavior of polymer composite flywheel rims[J]. Polymer Composites, 2004, 25(5): 527-534. [28] PORTNOV G, UTHE A N, CRUZ I, et al. Design of steel- composite multirim cylindrical flywheels manufactured by winding with high tensioning and in situ curing. 1. Basic relations[J]. Mechanics of Composite Materials, 2005, 41(2): 139-152. [29] PORTNOV G, UTHE A N, CRUZ I, et al. Design of steel-composite multirim cylindrical flywheels manufactured by winding with high tensioning and in situ curing. 2. Numerical analysis[J]. Mechanics of Composite Materials, 2005, 41(3): 241-254. [30] ARVIN A C, BAKIS C E. Optimal design of press-fitted filament wound composite flywheel rotors[J]. Composite Structures, 2006, 72(1): 47-57. [31] 汤继强, 张永斌, 赵丽滨. 过盈装配的金属轮毂-复合材料飞轮转子[J]. 光学精密工程, 2013(10): 2639-2647. TANG Jiqiang, ZHANG Yongbin, ZHAO Libin. Interference fitted metal-composite material flywheel rotor[J]. Optics and Precision Engineering, 2013(10): 2639-2647. [32] SHIUE F W, LESIEUTRE G A, BAKIS C E. A virtual containment strategy for filament-wound composite flywheel rotors with damage growth[J]. Journal of Composite Materials, 2002, 36(9): 1103-1120. [33] SHIUE F W, LESIEUTRE G A, BAKIS C E. Condition monitoring of filament-wound composite flywheels having circumferential cracks[J]. Journal of Spacecraft & Rockets, 2002, 39(2): 306-313. [34] 刘怀喜, 赵程, 张恒. 复合材料飞轮断裂与损伤的研究[J]. 机械强度, 2005, 27(5): 714-718. LIU Huaixi, ZHAO Cheng, ZHANG Heng. Research of fracture and damage on the composite fly wheel[J]. Journal of Mechanical Strength, 2005, 27(5): 714-718. [35] 刘怀喜, 贺跃进, 张恒. 声发射检测复合材料飞轮损伤与断裂的结构模拟试验[J]. 材料开发与应用, 2004, 19(4): 4-8. LIU Huaixi, HE Yuejin, ZHANG Heng. Structure simulative experiment by using acoustic emission to detect the damage and fracture in composite flywheel[J]. Development and Application of Materials, 2004, 19(4): 4-8. [36] 陈启军, 李成, 铁瑛, 等. 基于逐渐损伤理论的复合材料飞轮转子渐进失效分析[J]. 机械工程学报, 2013, 49(12): 60-65. CHEN Qijun, LI Cheng, TIE Ying, et al. Progressive failure analysis of composite flywheel rotor based on progressive damage theory[J]. Journal of Mechanical Engineering, 2013, 49(12): 60-65. [37] TZENG J T, EMERSON R, MOY P. Composite flywheels for energy storage[J]. Composites Science & Technology, 2006, 66(14): 2520-2527. [38] TZENG J T, MOY P. Composite energy storage flywheel design for fatigue crack resistance[J]. IEEE Transactions on Magnetics, 2008, 45(1): 480-484. [39] PÉREZ-APARICIO J L, RIPOLL L. Exact, integrated and complete solutions for composite flywheels[J]. Composite Structures, 2011, 93(5): 1404-1415. [40] KOYANAGI J. Durability of filament-wound composite flywheel rotors[J]. Mechanics of Time-Dependent Materials, 2012, 16(1): 71-83. [41] THIELMAN S, FABIEN B C. An optimal control approach to the design of stacked-ply composite flywheels[J]. Engineering Computations, 2000, 17(5): 541-555. [42] PORTNOV G G, BAKIS C E. Estimation of limit strains in disk-type flywheels made of a compliant elastomeric matrix composite undergoing radial creep[J]. Mechanics of Composite Materials, 2000, 36(1): 55-58. [43] GABRYS C W, BAKIS C E. Design and manufacturing of filament wound elastomeric matrix composite flywheels[J]. Journal of Reinforced Plastics & Composites, 1997, 16(6): 488-502. [44] GOWAYED Y, ABEL-HADY F, FLOWERS G T, et al. Optimal design of multi-direction composite flywheel rotors[J]. Polymer Composites, 2002, 23(3): 433-441. [45] ABDELHADY F. Manufacture and nde of multi-direction composite flywheel rims[J]. Journal of Reinforced Plastics & Composites, 2005, 24(4): 413-421. [46] FABIEN B C. The influence of failure criteria on the design optimization of stacked-ply composite flywheels[J]. Structural & Multidisciplinary Optimization, 2007, 33(6): 507-517. [47] CONTEH M A, NSOFOR E C. A symmetric angle-ply composite flywheel for high-speed energy storage[J]. Journal of Engineering Materials & Technology, 2016, 138(2). [48] KRZYSZTOF D, JAN T. Two approaches to the optimal design of composite flywheels[J]. Engineering Optimization, 2009, 41(4): 351-363. [49] UDDIN M S, MOROZOV E V, SHANKAR K. The effect of filament winding mosaic pattern on the stress state of filament wound composite flywheel disk[J]. Composite Structures, 2014, 107(1): 260-275. [50] HIROSHIMA N, HATTA H, KOYAMA M, et al. Optimization of flywheel rotor made of three-dimensional composites[J]. Composite Structures, 2015, 131: 304-311. [51] DAI Xingjian, WANG Yong, TANG Changliang, et al. Mechanics analysis on the composite flywheel stacked from circular twill woven fabric rings[J]. Composite Structures, 2016, 155: 19-28. [52] 蒋宇, 李志雄, 汤双清, 等. 三维五向编织复合材料飞轮预制件的工艺设计[J]. 现代制造工程, 2009(10): 83-87. JIANG Yu, LI Zhixiong, TANG Shuangqing, et al. Process design of three dimensional and five directional braided composite flywheel[J]. Modern Manufacturing Engineering, 2009, 29(10): 83-87. [53] MAHIEUX C A. Cost effective manufacturing process of thermoplastic matrix composites for the traditional industry: the example of a carbon-fiber reinforced thermoplastic flywheel[J]. Composite Structures, 2001, 52(3): 517-521. [54] KRACK M, SECANELL M, MERTINY P. Cost optimization of hybrid composite flywheel rotors for energy storage[J]. Structural & Multidisciplinary Optimization, 2010, 41(5): 779-795. [55] KRACK M, SECANELL M, MERTINY P. Cost optimization of a hybrid composite flywheel rotor with a split-type hub using combined analytical/numerical models[J]. Structural & Multidisciplinary Optimization, 2011, 44(1): 57-73. [56] WEN Shaobo, JIANG Shuyun. Optimum design of hybrid composite multi-ring flywheel rotor based on displacement method[J]. Composites Science & Technology, 2012, 72(9): 982-988. [57] RENSBURG P J J V, GROENWOLD A A, WOOD D W. Optimization of cylindrical composite flywheel rotors for energy storage[J]. Structural & Multidisciplinary Optimization, 2013, 47(1): 135-147. [58] 闫晓磊, 钟勇, 孙光永, 等. 混合复合材料飞轮转子成本优化设计[J]. 机械工程学报, 2012, 48(12): 118-126. YAN Xiaolei, ZHONG Yong, SUN Guangyong, et al. Cost optimization design of hybrid composite flywheel rotor[J]. Journal of Mechanical Engineering, 2012, 48(12): 118-126. [59] 丁世海, 李奕良, 戴兴建. 复合材料飞轮结构有限元分析与旋转强度试验[J]. 机械科学与技术, 2008, 27(3): 301-304. DING Shihai, LI Yiliang, DAI Xingjian. Structural finite element analysis and spin tests of energy storage flywheel[J]. Mechanical Science & Technology for Aerospace Engineering, 2008, 27(3): 301-304. [60] TAKAHASHI K, KITADE S, MORITA H. Development of high speed composite flywheel rotors for energy storage systems[J]. Advanced Composite Materials, 2002, 11(1): 40-49. [61] Boeing. Low-cost, high-energy-density flywheel storage grid[EB/OL]. [2010-07-12]. https://arpa-e.energy.gov/?q=slick-sheet-project/advanced- flywheel-composite-rotors. [62] ZAITSEV I M, PORTNOV G G, TARNOPOL'SKII Y M. Spin-tests of composite flywheels: A review[J]. Mechanics of Composite Materials, 1997, 33(4): 356-370. [63] OLSZEWSKI M, O'KAIN D U. Advances in flywheel technology for space power applications[C]//21st Intersociety Energy Conversion Engineering Conference: Advancing Toward Technology Breakout in Energy Conversion, San Diego, 1986: 1823-1828. [64] HIROSHIMA N, HATTA H, KOYAMA M, et al. Spin test of three-dimensional composite rotor for flywheel energy storage system[J]. Composite Structures, 2015, 136: 626- 634. [65] HARTL S, SCHULZ A, SIMA H, et al. A static burst test for composite flywheel rotors[J]. Applied Composite Materials, 2016, 23(3): 271-288. [66] DULANEY K A, BENO J H, THOMPSON R C. Modeling of multiple liner containment systems for high speed rotors[J]. IEEE Transactions on Magnetics, 1999, 35(1): 334-339. [67] BAKIS C E, HALDEMAN B J, EMERSON R P. Recent Advance in Experimental Mechanics: Optoelectronic displacement measurement method for rotating disks[M]. Gdoutos E E. Springer, 2002: 315-324. |
[1] | Xiaojie YANG, Haiyun WANG, Zhongchuan JIANG, Zhanghua SONG. Bidirectional power flow strategy design of BLDC motor for flywheel energy storage [J]. Energy Storage Science and Technology, 2022, 11(7): 2233-2240. |
[2] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[3] | SHI Peng, ZHAI Ximin, YANG Hejie, ZHAO Chenzi, YAN Chong, BIE Xiaofei, JIANG Tao, ZHANG Qiang. Recent advances in composite lithium anode under practical conditions [J]. Energy Storage Science and Technology, 2022, 11(6): 1725-1738. |
[4] | Junze GAO, Yibing LIU, Chuandi ZHOU, Haiting HE, Xin WU. Magnetic circuit design and magnetic analytical model of permanent magnet suspension bearing for flywheel [J]. Energy Storage Science and Technology, 2022, 11(5): 1437-1445. |
[5] | Yuying LI, Wenzhen WEI, Qi LI, Yuting WU. Preparation and investigation of quaternary nitrates/halloysites/graphite shape-stable composite phase change material with low melting temperature for thermal energy storage [J]. Energy Storage Science and Technology, 2022, 11(3): 1044-1051. |
[6] | Dengfeng JIANG, Yajun CHEN, Yaolong HE, Da BIAN, Hongjiu HU. Role of drying on the mechanical behavior of composite anodes [J]. Energy Storage Science and Technology, 2022, 11(3): 957-963. |
[7] | Yulong CHEN, Xin WU, Wei TENG, Yibing LIU. Power coordinated control strategy of flywheel energy storage array for wind power smoothing [J]. Energy Storage Science and Technology, 2022, 11(2): 600-608. |
[8] | Shusheng LI, Jialiang WANG, Guangjun LI, Dachun WANG, Yadong CUI. Demonstration applications in wind solar energy storage field based on MW flywheel array system [J]. Energy Storage Science and Technology, 2022, 11(2): 583-592. |
[9] | Yong ZHOU, Xiangyu CHEN, Lin JIAN, Fuhui WANG, Degao TIAN, Chuanjun HAN. Design and experimental research on flywheel energy storage system of beam pumping unit [J]. Energy Storage Science and Technology, 2022, 11(2): 593-599. |
[10] | Yunqi GUO, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Preparation of Al2O3 fibers using a template method, and the investigation of the thermal properties of paraffin phase-change composite [J]. Energy Storage Science and Technology, 2022, 11(2): 511-520. |
[11] | Zhiguo AN, Xian ZHANG, Hui ZHU, Chunjie ZHANG. Heat dissipation performance of honeycomb-like thermal management system combined CPCM with water cooling for lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 211-220. |
[12] | Boya ZHANG, Bohong LIU, Yuanhang LI, Xin LIU, Qianfeng CHEN, Sanying HOU. Binary oxide modified catalyst preparation and self-humidifying performance [J]. Energy Storage Science and Technology, 2021, 10(6): 2013-2019. |
[13] | Yue SU, Xuhua LIU, Fanglei ZENG, Yurong REN, Bencai LIN. Preparation and properties of polyvinylidene fluoride/polyvinylidene fluoride sulfonate lithium/lithium salt composite solid electrolyte [J]. Energy Storage Science and Technology, 2021, 10(6): 2069-2076. |
[14] | Zhuo XU, Lili ZHENG, Bing CHEN, Tao ZHANG, Xiuling CHANG, Shouli WEI, Zuoqiang DAI. Overview of research on composite electrolytes for solid-state batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2117-2126. |
[15] | Dajin LIU, Qiang WU, Renjie HE, Chuang YU, Jia XIE, Shijie CHENG. Research progress of biopolymers in Si anodes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2156-2168. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||