Energy Storage Science and Technology ›› 2018, Vol. 7 ›› Issue (4): 575-585.doi: 10.12028/j.issn.2095-4239.2018.0097
Previous Articles Next Articles
QI Wenbin, ZHANG Hua, JIN Zhou, ZHAO Junnian, WU Yida, ZHAN Yuanjie, CHEN Yuyang, CHEN Bin, BEN Liubin, YU Hailong, LIU Yanyan, HUANG Xuejie
Received:
2018-06-15
Revised:
2018-06-19
Online:
2018-07-01
Published:
2018-06-20
CLC Number:
QI Wenbin, ZHANG Hua, JIN Zhou, ZHAO Junnian, WU Yida, ZHAN Yuanjie, CHEN Yuyang, CHEN Bin, BEN Liubin, YU Hailong, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2018 to May 31, 2018)[J]. Energy Storage Science and Technology, 2018, 7(4): 575-585.
[1] CHOI A, LIM J, KIM H J, et al. Site-selective in situ electrochemical doping for mn-rich layered oxide cathode materials in lithium-ion batteries[J]. Advanced Energy Materials, 2018, 8(11):doi:10.1002/aenm.201702514. [2] TERANISHI T, KATSUJI N, CHAJIMA K, et al. Low-temperature high-rate capabilities of lithium batteries via polarization-assisted ion pathways[J]. Advanced Electronic Materials, 2018, 4(4):doi:10.1002/aelm.201700413. [3] ZHANG S J, DENG Y P, WU Q H, et al. Sodium-alginate-based binders for lithium-rich cathode materials in lithium-ion batteries to suppress voltage and capacity fading[J]. Chemelectrochem, 2018, 5(9):1321-1329. [4] LI X, QIAO Y, GUO S H, et al. Direct visualization of the reversible O2-/O-redox process in Li-rich cathode materials[J]. Advanced Materials, 2018, 30(14):doi:10.1002/adma.201705197. [5] KAN W H, CHEN D C, PAPP J K, et al. Unravelling solid-state redox chemistry in Li1.3Nb0.3Mn0.4O2 single-crystal cathode material[J]. Chemistry of Materials, 2018, 30(5):1655-1666. [6] LIU H S, HARRIS K J, JIANG M, et al. Unraveling the rapid performance decay of layered high-energy cathodes:From nanoscale degradation to drastic bulk evolution[J]. ACS Nano, 2018, 12(3):2708-2718. [7] MU L Q, LIN R L, XU R, et al. Oxygen release induced chemomechanical breakdown of layered cathode materials[J]. Nano Letters, 2018, 18(5):3241-3249. [8] LI J Y, LI W D, WANG S Y, et al. Facilitating the operation of lithium-ion cells with high-nickel layered oxide cathodes with a small dose of aluminum[J]. Chemistry of Materials, 2018, 39(9):3101-3109. [9] LA MONACA A, DE GIORGIO F, SOAVI F, et al. 1,3-dioxolane:A strategy to improve electrode interfaces in lithium ion and lithium-sulfur batteries[J]. Chemelectrochem, 2018, 5(9):1272-1278. [10] CHEN B, BEN L B, CHEN Y Y, et al. Understanding the formation of the truncated morphology of high-voltage spinel LiNi0.5Mn1.5O4 via direct atomic-level structural observations[J]. Chemistry of Materials, 2018, 30(6):2174-2182. [11] INTAN N N, KLYUKIN K, ALEXANDROV V. Theoretical insights into oxidation states of transition metals at (001) and (111) LiNi0.5Mn1.5O4 spinel surfaces[J]. Journal of the Electrochemical Society, 2018, 165(5):A1099-A1103. [12] LAPPING J G, DELP S A, ALLEN J L, et al. Changes in electronic structure upon Li deintercalation from LiCoPO4 derivatives[J]. Chemistry of Materials, 2018, 30(6):1898-1906. [13] DUPRE N, CUISINIER M, ZHENG Y, et al. Evolution of LiFePO4 thin films interphase with electrolyte[J]. Journal of Power Sources, 2018, 382:45-55. [14] CHERKASHININ G, LEBEDEV M V, SHARATH S U, et al. Exploring redox activity in a LiCoPO4-LiCo2P3O10 tailored positive electrode for 5 V lithium ion batteries:Rigid band behavior of the electronic structure and stability of the delithiated phase[J]. Journal of Materials Chemistry A, 2018, 6(12):4966-4970. [15] DIAZ-LOPEZ M, FREIRE M, JOLY Y, et al. Local structure and lithium diffusion pathways in Li4Mn2O5 high capacity cathode probed by total scattering and XANES[J]. Chemistry of Materials, 2018, 39(9):3060-3070. [16] HOUSE R A, JIN L Y, MAITRA U, et al. Lithium manganese oxyfluoride as a new cathode material exhibiting oxygen redox[J]. Energy & Environmental Science, 2018, 11(4):926-932. [17] LI Y D, KHURRAM A, GALLANT B M. A high-capacity lithium-gas battery based on sulfur fluoride conversion[J]. Journal of Physical Chemistry C, 2018, 122(13):7128-7138. [18] LEE J, KITCHAEV D A, KWON D H, et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials[J]. Nature, 2018, 556(7700):185-190. [19] JUNG S K, HWANG I, CHO S P, et al. New iron-based intercalation host for lithium-ion batteries[J]. Chemistry of Materials, 2018, 30(6):1956-1964. [20] AMIN R, HOSSAIN M M, ZAKARIA Y. Interfacial kinetics and ionic diffusivity of the electrodeposited MoS2 film[J]. ACS Applied Materials & Interfaces, 2018, 10(16):13509-13518. [21] ZENG W W, WANG L, PENG X, et al. Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries[J]. Advanced Energy Materials, 2018, 8(11):doi:10.1002/aenm.201702314. [22] DOSE W M, PIERNAS-MUNOZ M J, MARONI V A, et al. Capacity fade in high energy silicon-graphite electrodes for lithium-ion batteries[J]. Chemical Communications, 2018, 54(29):3586-3589. [23] GU Y Y, YANG S M, ZHU G B, et al. The effects of cross-linking cations on the electrochemical behavior of silicon anodes with alginate binder[J]. Electrochimica Acta, 2018, 269:405-414. [24] SON Y, SIM S, MA H, et al. Exploring critical factors affecting strain distribution in 1D silicon-based nanostructures for lithium-ion battery anodes[J]. Advanced Materials, 2018, 30(15):doi.org/10.1002/adma. 201705430. [25] ZHANG Q B, CHEN H X, LUO L L, et al. Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries[J]. Energy & Environmental Science, 2018, 11(3):669-681. [26] BASU S, SURESH S, GHATAK K, et al. Utilizing van der waals slippery interfaces to enhance the electrochemical stability of silicon film anodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(16):13442-13451. [27] GENDENSUREN B, OH E S. Dual-crosslinked network binder of alginate with polyacrylamide for silicon/graphite anodes of lithium ion battery[J]. Journal of Power Sources, 2018, 384:379-386. [28] HAYS K A, RUTHER R E, KUKAY A J, et al. What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes?[J]. Journal of Power Sources, 2018, 384:136-144. [29] WANG C, HAN Y Y, LI S H, et al. Thermal Lithiated-TiO2:A robust and electron-conducting protection layer for Li-Si alloy anode[J]. ACS Applied Materials & Interfaces, 2018, 10(15):12750-12758. [30] YOO H, PARK E, BAE J, et al. Si nanocrystal-embedded SiOx nanofoils:Two-dimensional nanotechnology-enabled high performance Li storage materials[J]. Scientific Reports, 2018, 8:doi:10.1038/s41598-018-25159-4. [31] WANG Y K, ZHANG Q L, LI D W, et al. Mechanical property evolution of silicon composite electrodes studied by environmental nanoindentation[J]. Advanced Energy Materials, 2018, 8(10):doi:10.1002/aenm.201702578. [32] ZHAO Q, TU Z Y, WEI S Y, et al. Building organic/inorganic hybrid interphases for fast interfacial transport in rechargeable metal batteries[J]. Angewandte Chemie-International Edition, 2018, 57(4):992-996. [33] FOROOZAN T, SOTO F A, YURKIV V, et al. Synergistic effect of graphene oxide for impeding the dendritic plating of Li[J]. Advanced Functional Materials, 2018, 28(15):doi:10.1002/adfm.201705917. [34] TU Z Y, CHOUDHURY S, ZACHMAN M J, et al. Fast ion transport at solid-solid interfaces in hybrid battery anodes[J]. Nature Energy, 2018, 3(4):310-316. [35] LIU Y, XIE K, PAN Y, et al. Impacts of the properties of anode solid electrolyte interface on the storage life of Li-ion batteries[J]. Journal of Physical Chemistry C, 2018, 122(17):9411-9416. [36] GARCIA G, DIECKHOFER S, SCHUHMANN W, et al. Exceeding 6500 cycles for LiFePO4/Li metal batteries through understanding pulsed charging protocols[J]. Journal of Materials Chemistry A, 2018, 6(11):4746-4751. [37] GU Y, WANG W W, LI Y J, et al. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-018-03466-8. [38] LI L, BASU S, WANG Y P, et al. Self-heating-induced healing of lithium dendrites[J]. Science, 2018, 359(6383):1513-1516. [39] YANG C P, ZHANG L, LIU B Y, et al. Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(15):3770-3775. [40] CHA E, PATEL M D, PARK J, et al. 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries[J]. Nature Nanotechnology, 2018, 13(4):doi:10.1038/s41565-018-0061-y. [41] LI X, TAO J H, HU D H, et al. Stability of polymeric separators in lithium metal batteries in a low voltage environment[J]. Journal of Materials Chemistry A, 2018, 6(12):5006-5015. [42] STEWART D M, PEARSE A J, KIM N S, et al. Tin oxynitride anodes by atomic layer deposition for solid-state batteries[J]. Chemistry of Materials, 2018, 30(8):2526-2534. [43] GONZALEZ J F, ANTARTIS D A, CHASIOTIS I, et al. In situ X-ray micro-CT characterization of chemo-mechanical relaxations during Sn lithiation[J]. Journal of Power Sources, 2018, 381:181-189. [44] WANG X, ZENG W, HONG L, et al. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates[J]. Nature Energy, 2018, 3(3):227-235. [45] TRINH N D, LEPAGE D, AYME-PERROT D, et al. An artificial lithium protective layer that enables the use of acetonitrile-based electrolytes in lithium metal batteries[J]. Angewandte Chemie-International Edition, 2018, 57(18):5072-5075. [46] CHENG Q, ZHANG Y. Multi-channel graphite for high-rate lithium ion battery[J]. Journal of the Electrochemical Society, 2018, 165(5):A1104-A1109. [47] YAN X F, LI Z B, YING H J, et al. A novel thin solid electrolyte film and its application in all-solid-state battery at room temperature[J]. Ionics, 2018, 24(5):1545-1551. [48] PUT B, VEREECKEN P M, STESMANS A. On the chemistry and electrochemistry of LiPON breakdown[J]. Journal of Materials Chemistry A, 2018, 6(11):4848-4859. [49] GONZALEZ F, GREGORIO V, RUBIO A, et al. Ionic liquid-based thermoplastic solid electrolytes processed by solvent-free procedures[J]. Polymers, 2018, 10(2):doi:10.3390/polym10020124. [50] TSUKASAKI H, MORI Y, OTOYAMA M, et al. Crystallization behavior of the Li2S-P2S5 glass electrolyte in the LiNi1/3Mn1/3Co1/3O2 positive electrode layer[J]. Scientific Reports, 2018, 8:doi:10.1038/s41598-018-24524-7. [51] KRAUSKOPF T, CULVER S P, ZEIER W G. Bottleneck of diffusion and inductive effects in Li10Ge1-xSnxP2S12[J]. Chemistry of Materials, 2018, 30(5):1791-1798. [52] ZENG X X, YIN Y X, SHI Y, et al. Lithiation-derived repellent toward lithium anode safeguard in quasi-solid batteries[J]. Chem., 2018, 4(2):298-307. [53] FERRARESI G, EL KAZZI M, CZORNOMAZ L, et al. Electrochemical performance of all-solid-state Li-ion batteries based on garnet electrolyte using silicon as a model electrode[J]. ACS Energy Letters, 2018, 3(4):1006-1012. [54] HUANG X, LIU C, LU Y, et al. A Li-garnet composite ceramic electrolyte and its solid-state Li-S battery[J]. Journal of Power Sources, 2018, 382:190-197. [55] JUDEZ X, PISZCZ M, COYA E, et al. Stable cycling of lithium metal electrode in nanocomposite solid polymer electrolytes with lithium bis(fluorosulfonyl)imide[J]. Solid State Ionics, 2018, 318:95-101. [56] ALDALUR I, MARTINEZ-IBANEZ M, PISZCZ M, et al. Lowering the operational temperature of all-solid-state lithium polymer cell with highly conductive and interfacially robust solid polymer electrolytes[J]. Journal of Power Sources, 2018, 383:144-149. [57] ZHAO P C, XIANG Y, XU Y, et al. Dense garnet-like Li5La3Nb2O12 solid electrolyte prepared by self consolidation method[J]. Journal of Power Sources, 2018, 388:25-31. [58] LIU J W, SONG X, ZHOU L, et al. Fluorinated phosphazene derivative-A promising electrolyte additive for high voltage lithium ion batteries:From electrochemical performance to corrosion mechanism[J]. Nano Energy, 2018, 46:404-414. [59] ZHANG X Q, CHEN X, CHENG X B, et al. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes[J]. Angewandte Chemie-International Edition, 2018, 57(19):5301-5305. [60] BELTROP K, KLEIN S, NOLLE R, et al. Triphenylphosphine oxide as highly effective electrolyte additive for graphite/NMC811 lithium ion cells[J]. Chemistry of Materials, 2018, 30(8):2726-2741. [61] HANSEN S, SHREE S, NEUBUSER G, et al. Corset-like solid electrolyte interface for fast charging of silicon wire anodes[J]. Journal of Power Sources, 2018, 381:8-17. [62] BEICHEL W, KLOSE P, BLATTMANN H, et al. Simple green synthesis and electrochemical performance of a new fluorinated carbonate as additive for lithium-ion batteries[J]. Chemelectrochem, 2018, 5(10):1415-1420. [63] LAI C H, ASHBY D S, LIN T C, et al. Application of poly(3-hexylthiophene-2,5-diyl) as a protective coating for high rate cathode materials[J]. Chemistry of Materials, 2018, 30(8):2589-2599. [64] LACEY S D, KIRSCH D J, LI Y J, et al. Extrusion-based 3D printing of hierarchically porous advanced battery electrodes[J]. Advanced Materials, 2018, 30(12):doi:10.1002/adma.201705651. [65] ASADI M, SAYAHPOUR B, ABBASI P, et al. A lithium-oxygen battery with a long cycle life in an air-like atmosphere[J]. Nature, 2018, 555(7697):502-506. [66] KWAK W J, PARK S J, JUNG H G, et al. Optimized concentration of redox mediator and surface protection of Li metal for maintenance of high energy efficiency in Li-O2 batteries[J]. Advanced Energy Materials, 2018, 8(9):doi:10.1002/aenm.201702258. [67] WANG L, PAN J, ZHANG Y, et al. A Li-air battery with ultralong cycle life in ambient air[J]. Advanced Materials, 2018, 30(3):doi:10.1002/adma.201704378. [68] HOEFLING A, NGUYEN D T, PARTOVI-AZAR P, et al. Mechanism for the stable performance of sulfur-copolymer cathode in lithium-sulfur battery studied by solid-state NMR spectroscopy[J]. Chemistry of Materials, 2018, 39(9):2915-2923. [69] YE F M, LIU M N, YAN X, et al. In situ electrochemically derived amorphous-Li2S for high performance Li2S/graphite full cell[J]. Small, 2018, 14(17):doi:10.1002/smll.201703871. [70] WU F X, POLLARD T P, ZHAO E B, et al. Layered LiTiO2 for the protection of Li2S cathodes against dissolution:Mechanisms of the remarkable performance boost[J]. Energy & Environmental Science, 2018, 11(4):807-817. [71] NOELLE D J, SHI Y, WANG M, et al. Aggressive electrolyte poisons and multifunctional fluids comprised of diols and diamines for emergency shutdown of lithium-ion batteries[J]. Journal of Power Sources, 2018, 384:93-97. [72] INOISHI A, NISHIO A, YOSHIOKA Y, et al. A single-phase all-solid-state lithium battery based on Li1.5Cr0.5Ti1.5(PO4)3 for high rate capability and low temperature operation[J]. Chemical Communications, 2018, 54(25):3178-3181. [73] CHEVRIER V L, LIU L, WOHL R, et al. Design and testing of prelithiated full cells with high silicon content[J]. Journal of the Electrochemical Society, 2018, 165(5):A1129-A1136. [74] ANTONOPOULOS B K, STOCK C, MAGLIA F, et al. Solid electrolyte interphase:Can faster formation at lower potentials yield better performance?[J]. Electrochimica Acta, 2018, 269:331-339. [75] BREUER S, UITZ M, WILKENING H M R. Rapid Li ion dynamics in the interfacial regions of nanocrystalline solids[J]. Journal of Physical Chemistry Letters, 2018, 9(8):2093-2097. [76] KUBOTA K, SIROMA Z, SANO H, et al. Diffusion of lithium cation in low-melting lithium molten salts[J]. Journal of Physical Chemistry C, 2018, 122(8):4144-4149. [77] WU X H, VILLEVIEILLE C, NOVAK P, et al. Monitoring the chemical and electronic properties of electrolyte-electrode interfaces in all-solid-state batteries using operando X-ray photoelectron spectroscopy[J]. Physical Chemistry Chemical Physics, 2018, 20(16):11123-11129. [78] CHIEN P H, FENG X Y, TANG M X, et al. Li distribution heterogeneity in solid electrolyte Li10GeP2S12 upon electrochemical cycling probed by Li-7 MRI[J]. Journal of Physical Chemistry Letters, 2018, 9(8):1990-1998. [79] WANDT J, JAKES P, GRANWEHR J, et al. Quantitative and time-resolved detection of lithium plating on graphite anodes in lithium ion batteries[J]. Materials Today, 2018, 21(3):231-240. [80] LIU Y H, TAKEDA S, KANEKO I, et al. Understanding the improved high-temperature cycling stability of a LiNi0.5Mn0.3Co0.2O2/graphite cell with vinylene carbonate:A comprehensive analysis approach utilizing LC-MS and DART-MS[J]. Journal of Physical Chemistry C, 2018, 122(11):5864-5870. [81] CARTER R, HUHMAN B, LOVE C T, et al. X-ray computed tomography comparison of individual and parallel assembled commercial lithium iron phosphate batteries at end of life after high rate cycling[J]. Journal of Power Sources, 2018, 381:46-55. [82] LAIK B, RESSEJAC I, VENET C, et al. Comparative study of electrochemical performance of commercial solid-state thin film Li microbatteries[J]. Thin Solid Films, 2018, 649:69-74. [83] STRAUSS F, DORRER L, BRUNS M, et al. Lithium tracer diffusion in amorphous LixSi for low Li concentrations[J]. Journal of Physical Chemistry C, 2018, 122(12):6508-6513. [84] ILOTT A J, MOHAMMADI M, SCHAUERMAN C M, et al. Rechargeable lithium-ion cell state of charge and defect detection by in-situ inside-out magnetic resonance imaging[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-018-04192. [85] CABANERO M A, BOARETTO N, RODER M, et al. Direct determination of diffusion coefficients in commercial Li-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(5):A847-A855. [86] SHEN F Y, DIXIT M B, XIAO X H, et al. Effect of pore connectivity on Li dendrite propagation within LLZO electrolytes observed with synchrotron X-ray tomography[J]. ACS Energy Letters, 2018, 3(4):1056-1061. [87] DINKELACKER F, MARZAK P, YUN J, et al. Multistage mechanism of lithium intercalation into graphite anodes in the presence of the solid electrolyte interface[J]. ACS Applied Materials & Interfaces, 2018, 10(16):14063-14069. [88] MUY S, BACHMAN J C, GIORDANO L, et al. Tuning mobility and stability of lithium ion conductors based on lattice dynamics[J]. Energy & Environmental Science, 2018, 11(4):850-859. [89] LI N, WEI W F, XIE K Y, et al. Suppressing dendritic lithium formation using porous media in lithium metal-based batteries[J]. Nano Letters, 2018, 18(3):2067-2073. [90] ASAKURA D, NANBA Y, MAKINOSE Y, et al. Large charge-transfer energy in LiFePO4 revealed by full-multiplet calculation for the Fe L-3-edge soft X-ray emission spectra[J]. Chemphyschem, 2018, 19(8):988-992. [91] LIU Z X, HU W Y, GAO F, et al. An ab initio study for probing iodization reactions on metallic anode surfaces of Li-I2 batteries[J]. Journal of Materials Chemistry A, 2018, 6(17):7807-7814. [92] ZEVGOLIS A, WOOD B C, MEHMEDOVIC Z, et al. Alloying effects on superionic conductivity in lithium indium halides for all-solid-state batteries[J]. Apl. Materials, 2018, 6(4):doi:10.1063/1.5011378. [93] KAZEMIABNAVI S, MALIK R, ORVANANOS B, et al. The effect of surface-bulk potential difference on the kinetics of intercalation in core-shell active cathode particles[J]. Journal of Power Sources, 2018, 382:30-37. [94] FANG Q H, WANG Q, LI J, et al. A systematic investigation of cycle number, temperature and electric field strength effects on Si anode[J]. Materials & Design, 2018, 144:1-13. [95] ALBINA J M, MARUSCZYK A, HAMMERSCHMIDT T, et al. Finite-temperature property-maps of Li-Mn-Ni-O cathode materials from ab initio calculations[J]. Journal of Materials Chemistry A, 2018, 6(14):5687-5694. [96] KIM T, LEYDEN M R, ONO L K, et al. Stacked-graphene layers as engineered solid-electrolyte interphase (SEI) grown by chemical vapour deposition for lithium-ion batteries[J]. Carbon, 2018, 132:678-690. [97] DUY T V T, OHWAKI T, IKESHOJI T, et al. High-throughput computational approach to Li/vacancy configurations and structural evolution during delithiation:The case of Li2MnO3 surface[J]. Journal of Physical Chemistry C, 2018, 122(10):5496-5508. [98] CANEPA P, DAWSON J A, GAUTAM G S, et al. Particle morphology and lithium segregation to surfaces of the Li7La3Zr2O12 solid electrolyte[J]. Chemistry of Materials, 2018, 39(9):3019-3027. [99] ARNESON C, WAWRZYNIAKOWSKI Z D, POSTLEWAITE J T, et al. Lithiation and delithiation processes in lithium-sulfur batteries from ab initio molecular dynamics simulations[J]. Journal of Physical Chemistry C, 2018, 122(16):8769-8779. [100] CRAWFORD A J, HUANG Q, KINTNER-MEYER M C W, et al. Lifecycle comparison of selected Li-ion battery chemistries under grid and electric vehicle duty cycle combinations[J]. Journal of Power Sources, 2018, 380:185-193. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[3] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[4] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[5] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[6] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[7] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[8] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[9] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[10] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[11] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[12] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[13] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[14] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[15] | Liang FANG, Kai ZHANG, Limin ZHOU. Recent advances and prospects of electrolyte for aluminum ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1236-1245. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||