Energy Storage Science and Technology ›› 2018, Vol. 7 ›› Issue (4): 565-574.doi: 10.12028/j.issn.2095-4239.2018.0088
Previous Articles Next Articles
XIA Qiuying, SUN Shuo, XU Jing, ZAN Feng, YUE Jili, XIA Hui
Received:
2018-06-08
Revised:
2018-06-16
Online:
2018-07-01
Published:
2018-07-01
CLC Number:
XIA Qiuying, SUN Shuo, XU Jing, ZAN Feng, YUE Jili, XIA Hui. All-solid-state thin film lithium batteries[J]. Energy Storage Science and Technology, 2018, 7(4): 565-574.
[1] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414:359-367. [2] MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2(4):16103. [3] ZHOU Y N, XUE M Z, FU Z W. Nanostructured thin film electrodes for lithium storage and all-solid-state thin-film lithium batteries[J]. Journal of Power Sources, 2013, 234:310-332. [4] KIM J G, SON B, MUKHERJEE S, et al. A review of lithium and non-lithium based solid state batteries[J]. Journal of Power Sources, 2015, 282:299-322. [5] HAN X, GONG Y, FU K K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nature Materials, 2017, 16(5):572-579. [6] CHEN R J, ZHANG Y B, LIU T, et al. Addressing the interface issues in all-solid-state bulk-type lithium ion battery via an all-composite approach[J]. ACS Applied Materials & Interfaces, 2017, 9(11):9654-9661. [7] GAO Z, SUN H, FU L, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries[J]. Advanced Materials, 2018, 30(17):doi:https://doi.org/10.1002/.adma.201705702. [8] BATES J B, DUDNEY N J, NEUDECKER B, et al. Thin-film lithium and lithium-ion batteries[J]. Solid State Ionics, 2000, 135(1/4):33-45. [9] 李泓, 许晓雄. 固态锂电池研发愿景和策略[J]. 储能科学与技术, 2016, 5(5):607-614. LI H, XU X X. R&D vision and strategies on solid lithium batteries[J]. Energy Storage Science and Technology, 20165(5):607-614. [10] 陈凯, 程丽乾. 体型无机全固态锂离子电池研究进展[J]. 硅酸盐学报, 2017, 45(6):785-792. CHEN K, CHENG L. Development on bulk-type inorganic all-solid-state lithium ion batteries[J]. Journal of the Chinese Ceramic Society, 2017, 45(6):785-792. [11] NOWAK S, BERKEMEIER F, SCHMITZ G. Ultra-thin LiPON films-fundamental properties and application in solid state thin film model batteries[J]. Journal of Power Sources, 2015, 275:144-150. [12] SCHWÖBEL A, JAEGERMANN W, HAUSBRAND R. Interfacial energy level alignment and energy level diagrams for all-solid Li-ion cells:Impact of Li-ion transfer and double layer formation[J]. Solid State Ionics, 2016, 288:224-228. [13] GITTLESON F S, EL GABALY F. Non-faradaic Li+ migration and chemical coordination across solid-state battery interfaces[J]. Nano Letters, 2017, 17(11):6974-6982. [14] 陈牧, 颜悦, 刘伟明, 等. 全固态薄膜锂电池研究进展和产业化展望[J]. 航空材料学报, 2014, 34(6):1-20. CHEN M, YAN Y, LIU W M, et al. Research advances and industrialization prospects of all-solid-state thin-film lithium battery[J]. Journal of Aeronautical Materials, 2014, 34(6):1-20. [15] BATES J B, DUDNEY N J, GRUZALSKI G R, et al. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries[J]. Journal of Power Sources, 1993, 43(1/3):103-110. [16] WANG B, BATES J B, HART F X, et al. Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes[J]. Journal of the Electrochemical Society, 1996, 143(10):3203-3213. [17] CHOI C H, CHO W I, CHO B W, et al. Radio-frequency magnetron sputtering power effect on the ionic conductivities of LiPON films[J]. Electrochemical and Solid-State Letters, 2002, 5(1):A14-A17. [18] CHRISTIANSEN A S, STAMATE E, THYDÉN K, et al. Plasma properties during magnetron sputtering of lithium phosphorous oxynitride thin films[J]. Journal of Power Sources, 2015, 273:863-872. [19] PUT B, VEREECKEN P M, MEERSSCHAUT J, et al. Electrical characterization of ultrathin RF-sputtered LiPON layers for nanoscale batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(11):7060-7069. [20] LEE S J, BAE J H, LEE H W, et al. Electrical conductivity in Li-Si-P-O-N oxynitride thin-films[J]. Journal of Power Sources, 2003, 123(1):61-64. [21] XIONG Y, TAO H, ZHAO J, et al. Effects of annealing temperature on structure and opt-electric properties of ion-conducting LLTO thin films prepared by RF magnetron sputtering[J]. Journal of Alloys and Compounds, 2011, 509(5):1910-1914. [22] LÜ X, HOWARD J W, CHEN A, et al. Antiperovskite Li3OCl superionic conductor films for solid-state Li-ion batteries[J]. Advanced Science, 2016, 3(3):doi:https://doi.org/10.1002/.advs. 201500359. [23] CHEN H, TAO H, ZHAO X, et al. Fabrication and ionic conductivity of amorphous Li-Al-Ti-P-O thin film[J]. Journal of Non-Crystalline Solids, 2011, 357(16/17):3267-3271. [24] KIM S, HIRAYAMA M, TAMINATO S, et al. Epitaxial growth and lithium ion conductivity of lithium-oxide garnet for an all solid-state battery electrolyte[J]. Dalton Transactions, 2013, 42(36):13112-13117. [25] TAKEHARA Z, OGUMI Z, UCHIMOTO Y, et al. Thin film solid-state lithium batteries prepared by consecutive vapor-phase processes[J]. Journal of the Electrochemical Society, 1991, 138(6):1574-1582. [26] OHTSUKA H, SAKURAI Y. Characteristics of Li/MoO3-x thin film batteries[J]. Solid State Ionics, 2001, 144(1/2):59-64. [27] BABA M, KUMAGAI N, KOBAYASHI H, et al. Fabrication and electrochemical characteristics of all-solid-state lithium-ion batteries using V2O5 thin films for both electrodes[J]. Electrochemical and Solid-State Letters, 1999, 2(7):320-322. [28] PARK H Y, LEE S R, LEE Y J, et al. Bias sputtering and characterization of LiCoO2 thin film cathodes for thin film microbattery[J]. Materials Chemistry and Physics, 2005, 93(1):70-78. [29] CHIU K F. Lithium cobalt oxide thin films deposited at low temperature by ionized magnetron sputtering[J]. Thin Solid Films, 2007, 515(11):4614-4618. [30] IRIYAMA Y, NISHIMOTO K, YADA C, et al. Charge-transfer reaction at the lithium phosphorus oxynitride glass electrolyte/lithium manganese oxide thin-film interface and its stability on cycling[J]. Journal of the Electrochemical Society, 2006, 153(5):A821-A825. [31] BATES J B, LUBBEN D, DUDNEY N J. Thin-film Li-LiMn2O4 batteries[J]. IEEE Aerospace and Electronic Systems Magazine, 1995, 10(4):30-32. [32] HONG J, WANG C, DUDNEY N J, et al. Characterization and performance of LiFePO4 thin-film cathodes prepared with radio-frequency magnetron-sputter deposition[J]. Journal of the Electrochemical Society, 2007, 154(8):A805-A809. [33] WANG Y, YANG G, YANG Z, et al. High power and capacity of LiNi0.5Mn1.5O4 thin films cathodes prepared by pulsed laser deposition[J]. Electrochimica Acta, 2013, 102:416-422. [34] YIM H, KONG W Y, KIM Y C, et al. Electrochemical properties of Li[Li0.2Mn0.54Co0.13Ni0.13] O2 cathode thin film by RF sputtering for all-solid-state lithium battery[J]. Journal of Solid State Chemistry, 2012, 196:288-292. [35] XIA H, XIONG W, LIM C K, et al. Hierarchical TiO2-B nanowire@α-Fe2O3 nanothorn core-branch arrays as superior electrodes for lithium-ion microbatteries[J]. Nano Research, 2014, 7(12):1797-1808. [36] XIA Q, JABEEN N, SAVILOV S V, et al. Black mesoporous Li4Ti5O12-δ nanowall arrays with improved rate performance as advanced 3D anodes for microbatteries[J]. Journal of Materials Chemistry A, 2016, 4(44):17543-17551. [37] GE M, RONG J, FANG X, et al. Porous doped silicon nanowires for lithium ion battery anode with long cycle life[J]. Nano Letters, 2012, 12(5):2318-2323. [38] MUKAIBO H, SUMI T, YOKOSHIMA T, et al. Electrodeposited Sn-Ni alloy film as a high capacity anode material for lithium-ion secondary batteries[J]. Electrochemical and Solid-State Letters, 2003, 6(10):A218-A220. [39] DUDNEY N J, NEUDECKER B J. Solid state thin-film lithium battery systems[J]. Current Opinion in Solid State and Materials Science, 1999, 4(5):479-482. [40] LIANG C C, BRO P. A high-voltage, solid-state battery system i. design considerations[J]. Journal of the Electrochemical Society, 1969, 116(9):1322-1323. [41] KANEHORI K, MATSUMOTO K, MIYAUCHI K, et al. Thin film solid electrolyte and its application to secondary lithium cell[J]. Solid State Ionics, 1983, 9:1445-1448. [42] JONES S D, AKRIDGE J R. A thin-film solid-state microbattery[J]. Journal of Power Sources, 1993, 44(1-3):505-513. [43] 刘文元, 王旭辉, 李驰麟, 等. 全固态薄膜锂/锂离子电池的研究进展[J]. 化学研究与应用, 2007, 19(9):953-958. LIU W, WANG X, LI C, et al. Progress in all-solid-state thin film lithium/Li-ion battery[J]. Chemical Research and Application, 2007, 19(9):953-958. [44] 吴勇民, 吴晓萌, 朱蕾, 等. 全固态薄膜锂电池研究进展[J]. 储能科学与技术, 2016, 5(5):678-701. WU Y, WU X, ZHU L, et al. The development of studies in all-solid-state thin film lithium batteries[J]. Energy Storage Science and Technology, 2016, 5(5):678-701. [45] Winter Green Research. Thin film batteries:market shares, strategies, and forecasts, worldwide, 2015 to 2021[EB/OL]. http://www.wintergreenresearch.com/thin-film-batteries. [46] Acessible Clean Energy. Market for flat thin-film and printed batteries to grow to $1.1 billion by 2022[EB/OL]. https://accessiblecleanenergy.wordpress.com/2015/08/06/market-for-flat-thin-film-and-printed-batteries-to-grow-to-1-1-billion-by-2022/. [47] Markets and Markets. Flexible Battery Market worth 958.4 Million USD by 2022[EB/OL]. https://www.marketsandmarkets.com/PressReleases/flexible-battery.asp. [48] Infinite Power Solutions. Organic-free, all-solid-state thin-film batteriesfor cell phones, tablets, andfuture devices[EB/OL]. http://www.batterypoweronline.com/wp-content/uploads/2012/09/IPS-All-Solid-State-Battery-for-Cell-Phones.pdf [49] BABA M, KUMAGAI N, FUJITA H, et al. Multi-layered Li-ion rechargeable batteries for a high-voltage and high-current solid-state power source[J]. Journal of Power Sources, 2003, 119:914-917. [50] ZHANG H, NING H, BUSBEE J, et al. Electroplating lithium transition metal oxides[J]. Science Advances, 2017, 3(5):doi:10.1126/.sciadv. 1602427. |
[1] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[2] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[3] | Suting WENG, Zepeng LIU, Gaojing YANG, Simeng ZHANG, Xiao ZHANG, Qiu FANG, Yejing LI, Zhaoxiang WANG, Xuefeng WANG, Liquan CHEN. Cryogenic electron microscopy (cryo-EM) characterizing beam-sensitive materials in lithium metal batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 760-780. |
[4] | Shiwei DENG, Jianfang WU, Tuo SHI. Defect chemistry analysis of solid electrolytes: Point defects in grain bulk and grain boundary space-charge layer [J]. Energy Storage Science and Technology, 2022, 11(3): 939-947. |
[5] | Yun TANG, Fang YUE, Kaimo GUO, Lanchun LI, Wangsong KE, Wei CHEN. Analysis of the development trend and the innovation ability of an all-solid-state lithium battery technology [J]. Energy Storage Science and Technology, 2022, 11(1): 359-369. |
[6] | Dangling LIU, Shimin WANG, Zhihui GAO, Lufu XU, Shubiao XIA, Hong GUO. Properties of three-dimensional NZSPO/PAN-[PEO-NATFST] sodium-battery-composite solid electrolyte [J]. Energy Storage Science and Technology, 2021, 10(3): 931-937. |
[7] | Saisai ZHANG, Hailei ZHAO. Electrode/electrolyte interfaces in Li7La3Zr2O12 garnet-based solid-state lithium metal battery: Challenges and progress [J]. Energy Storage Science and Technology, 2021, 10(3): 863-871. |
[8] | Yanming CUI, Zhihua ZHANG, Yuanqiao HUANG, Jiu LIN, Xiayin YAO, Xiaoxiong XU. Prototype all-solid-state battery electrodes preparation and assembly technology [J]. Energy Storage Science and Technology, 2021, 10(3): 836-847. |
[9] | Peng ZHANG, Xingqiang LAI, Junrong SHEN, Donghai ZHANG, Yongheng YAN, Rui ZHANG, Jun SHENG, Kangwei DAI. Research and industrialization progress of solid-state lithium battery [J]. Energy Storage Science and Technology, 2021, 10(3): 896-904. |
[10] | Xi LI, Yajuan YU, Zhiqi ZHANG, Lei WANG, Kai HUANG. Advance and patent analysis of solid electrolyte in solid-state lithium batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 77-86. |
[11] | Manman JIA, Long ZHANG. Recent development on sulfide solid electrolytes for solid-state sodium batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1266-1283. |
[12] | Ge SUN, Zhixuan WEI, Xinyuan ZHANG, Nan CHEN, Gang CHEN, Fei DU. Recent progress of sodium-based inorganic solid electrolytes [J]. Energy Storage Science and Technology, 2020, 9(5): 1251-1265. |
[13] | Peng GAO, Shan ZHANG, Liubin BEN, Wenwu ZHAO, Zhongzhu LIU, Rogerio RIBAS, Yongming ZHU, Xuejie HUANG. Application of niobium in lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1443-1453. |
[14] | Shu GAO, Min ZHOU, Jing HAN, Cong GUO, Yuan TAN, Kai JIANG, Kangli WANG. Progress on polymer electrolyte in sodium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1300-1308. |
[15] | Jie WU, Xiaobiao JIANG, Yang YANG, Yongmin WU, Lei ZHU, Weiping TANG. Progress of NASICON-structured Li1+xAlxTi2-x(PO4)3 (0 ≤x≤ 0.5) solid electrolyte [J]. Energy Storage Science and Technology, 2020, 9(5): 1472-1488. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||