Energy Storage Science and Technology ›› 2018, Vol. 7 ›› Issue (6): 1030-1039.doi: 10.12028/j.issn.2095-4239.2018.0167
Previous Articles Next Articles
CHEN Tianyu1, GAO Shang1, FENG Xuning1,2, LU Languang1, OUYANG Minggao1
Received:
2018-08-31
Revised:
2018-09-09
Online:
2018-11-01
Published:
2018-09-17
Contact:
10.12028/j.issn.2095-4239.2018.0167
CLC Number:
CHEN Tianyu, GAO Shang, FENG Xuning, LU Languang, OUYANG Minggao. Recent progress on thermal runaway propagation of lithium-ion battery[J]. Energy Storage Science and Technology, 2018, 7(6): 1030-1039.
[1] WANG Q, PING P, ZHAO X, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208:210-224. [2] SPOTNITZ R, FRANKLIN J. Abuse behavior of high-power, lithium-ion cells[J]. Journal of Power Sources, 2003, 113 (1):81-100. [3] DOUGHTY D H, PESARAN A A. Vehicle battery safety roadmap guidance[J]. Hybrid Vehicles, 2012 (4):doi:10.2172/1055366. [4] BIENSAN P, SIMON B, PÉRÈS J P, et al. On safety of lithium-ion cells[J]. Journal of Power Sources, 1999, 81/82 (99):906-912. [5] ZAGHIB K, DUBÉ J, DALLAIRE A, et al. Enhanced thermal safety and high power performance of carbon-coated LiFePO4 olivine cathode for Li-ion batteries[J]. Journal of Power Sources, 2012, 219 (12):36-44. [6] ESHETU G G, GRUGEON S, LARUELLE S, et al. In-depth safety-focused analysis of solvents used in electrolytes for large scale lithium ion batteries[J]. Physical Chemistry Chemical Physics Pccp, 2013, 15 (23):9145-9155. [7] 王子港, 魏晓玲, 杨朗, 等. 锂离子电池正极材料LixNi0.8Co0.15Al0.05O2热失控机理研究[J]. 电源技术, 2010, 34 (11):1130-1133. [8] 魏晓玲, 王子港, 杨朗, 等. 锂离子电池热失控过程负极放热反应研究[J]. 电源技术, 2009, 33 (10):879-883. [9] 胡杨, 李艳, 连芳, 等. 锂离子蓄电池热稳定性的机理[J]. 电源技术, 2006, 30 (10):833-836. [10] 杨晖. 锂离子电池热失控机理研究[C]//全国固态离子学学术会议, 2014. [11] FENG X, FANG M, HE X, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources, 2014, 255:294-301. [12] 何向明, 冯旭宁, 欧阳明高. 车用锂离子动力电池系统的安全性[J]. 科技导报, 2016, 34 (6):32-38. [13] FENG X, SUN J, OUYANG M, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module[J]. Journal of Power Sources, 2015, 275:261-273. [14] LAMB J, ORENDORFF C J, STEELE L A M, et al. Failure propagation in multi-cell lithium ion batteries[J]. Journal of Power Sources, 2015, 283:517-523. [15] 胡棋威. 锂离子电池热失控传播特性及阻断技术研究[D]. 北京:中国舰船研究院, 2015. [16] LEE C H, BAE S J, JANG M. A study on effect of lithium ion battery design variables upon features of thermal-runaway using mathematical model and simulation[J]. Journal of Power Sources, 2015, 293:498-510. [17] HATCHARD T D, MACNEIL D D, BASU A, et al. Thermal model of cylindrical and prismatic lithium-ion cells[J]. Journal of the Electrochemical Society, 2001, 148 (7):A755-A761. [18] KIM G H, PESARAN A, SPOTNITZ R. A three-dimensional thermal abuse model for lithium-ion cells[J]. Journal of Power Sources, 2007, 170 (2):476-489. [19] LOPEZ C F, JEEVARAJAN J A, MUKHERJEE P P. Characterization of lithium-ion battery thermal abuse behavior using experimental and computational analysis[J]. Journal of the Electrochemical Society, 2015, 162 (10):A2163-A2173. [20] HERZMANN C, GÜNTHER G, EKER B, et al. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application[J]. Journal of Power Sources, 2010, 195 (8):2393-2398. [21] FENG X, HE X, OUYANG M, et al. Thermal runaway propagation model for designing a safer battery pack with 25A·h LiNixCoyMnzO2 large format lithium ion battery[J]. Applied Energy, 2015, 154:74-91. [22] SPOTNITZ R M, WEAVER J, YEDUVAKA G, et al. Simulation of abuse tolerance of lithium-ion battery packs[J]. Journal of Power Sources, 2007, 163 (2):1080-1086. [23] SMYSHLYAEV A, KRSTIC M, CHATURVEDI N, et al. PDE model for thermal dynamics of a large Li-ion battery pack[J]. IEEE, 2011, 26 (4):959-964. [24] COLEMAN B, OSTANEK J, HEINZEL J. Reducing cell-to-cell spacing for large-format lithium ion battery modules with aluminum or PCM heat sinks under failure conditions[J]. Applied Energy, 2016, 180:14-26 [25] CHEN M, SUN Q, LI Y, et al. A thermal runaway simulation on a lithium titanate battery and the battery module[J]. Energies, 2015, 8 (1):490-500. [26] FENG X, LU L, OUYANG M, et al. A 3D thermal runaway propagation model for a large format lithium ion battery module[J]. Energy, 2016, 115 (1):194-208. [27] XU J, LAN C, QIAO Y, et al. Prevent thermal runaway of lithium-ion batteries with minichannel cooling[J]. Applied Thermal Engineering, 2016, 110:883-890. [28] WU P, ROMBERG J, FENG X, et al. Thermal runaway propagation within module consists of large format Li-ion cells[C]//Proceedings of SAE-China Congress 2015, doi:10.1007/978-981-287-978-3_11. [29] KIZILEL R, SABBAH R, SELMAN J R, et al. An alternative cooling system to enhance the safety of Li-ion battery packs[J]. Journal of Power Sources, 2009, 194 (2):1105-1112. [30] LIU X, STOLIAROV S I, DENLINGER M, et al. Comprehensive calorimetry of the thermally-induced failure of a lithium ion battery[J]. Journal of Power Sources, 2015, 280:516-525. [31] LOPEZ C F, JEEVARAJAN J A, MUKHERJEE P P. Experimental analysis of thermal runaway and propagation in lithium-ion battery modules[J]. Journal of the Electrochemical Society, 2015, 162 (9):A1905-A1915. [32] HUANG P, PING P, LI K, et al. Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode[J]. Applied Energy, 2016, 183:659-673. [33] WILKE S, SCHWEITZER B, KHATEEB S, et al. Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material:An experimental study[J]. Journal of Power Sources, 2017, 340:51-59. [34] WU M S, LIU K H, WANG Y Y, et al. Heat dissipation design for lithium-ion batteries[J]. Journal of Power Sources, 2002, 109 (1):160-166. [35] MOHAMMADIAN S K, ZHANG Y. Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles[J]. Journal of Power Sources, 2015, 273:431-439. [36] ZHAO R, ZHANG S, GU J, et al. An experimental study of lithium ion battery thermal management using flexible hydrogel films[J]. Journal of Power Sources, 2014, 255 (6):29-36. [37] ZOLOT M, PESARAN A A, MIHALIC M. Thermal evaluation of toyota prius battery pack[J]. 2002, doi:org/10.4271/2002-01-1962. [38] GIULIANO M R, PRASAD A K, ADVANI S G. Experimental study of an air-cooled thermal management system for high capacity lithium-titanate batteries[J]. Journal of Power Sources, 2012, 216:345-352. [39] LIU R, CHEN J, XUN J, et al. Numerical investigation of thermal behaviors in lithium-ion battery stack discharge[J]. Applied Energy, 2014, 132 (11):288-297. [40] MAHAMUD R, PARK C. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity[J]. Journal of Power Sources, 2011, 196 (13):5685-5696. [41] 魏解元. 车用锂离子电池组集成技术的研究[D]. 北京:清华大学, 2012. [42] SMITH J, HINTERBERGER M, HABLE P, et al. Simulative method for determining the optimal operating conditions for a cooling plate for lithium-ion battery cell modules[J]. Journal of Power Sources, 2014, 267 (4):784-792. [43] ZHANG S, ZHAO R, LIU J, et al. Investigation on a hydrogel based passive thermal management system for lithium ion batteries[J]. Energy, 2014, 68 (4):854-861. [44] PRILUTSKY A, HERMANN W A. Active thermal runaway mitigation system for use within a battery pack:US, 9093726[P]. 2010. [45] LAN C, XU J, QIAO Y, et al. Thermal management for high power lithium-ion battery by minichannel aluminum tubes[J]. Applied Thermal Engineering, 2016, 101:284-292. [46] JIN P, WANG S. A novel thermal management system for EV batteries using phase-change material[J]. Chemical Industry & Engineering Progress (in Chinese), 2014 (10):2608-2612. [47] QU Z G, LI W Q, WANG J L, et al. Passive thermal management using metal foam saturated with phase change material in a heat sink[J]. International Communications in Heat & Mass Transfer, 2012, 39 (10):1546-1549. [48] ALRASHDAN A, MAYYAS A T, AL-HALLAJ S. Thermo-mechanical behaviors of the expanded graphite-phase change material matrix used for thermal management of Li-ion battery packs[J]. Journal of Materials Processing Tech., 2010, 210 (1):174-179. [49] HIRANO H, TAJIMA T, HASEGAWA T, et al. Boiling liquid battery cooling for electric vehicle[J]. Transportation Electrification Asia-Pacific, 2014:1-4. [50] GRECO A, CAO D, JIANG X, et al. A theoretical and computational study of lithium-ion battery thermal management for electric vehicles using heat pipes[J]. Journal of Power Sources, 2014, 257 (3):344-355. [51] ZHAO R, GU J, LIU J. An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries[J]. Journal of Power Sources, 2015, 273:1089-1097. [52] PUTRA N, ARIANTARA B, PAMUNGKAS R A. Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application[J]. Applied Thermal Engineering, 2016, 99:784-789. [53] FINEGAN D P, SCHEEL M, ROBINSON J B, et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway[J]. Nature Communications, 2015, 6:6924. [54] DARCY E. Driving factors for mitigating cell thermal runaway propagation and arresting flames in high performing Li-ion battery designs[R]. NASA JSC-CN-33002, 2015. |
[1] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[2] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[3] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[4] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[5] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[6] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[7] | DING Yi, YANG Yan, CHEN Kai, ZENG Tao, HUANG Yunhui. Intelligent fire protection of lithium-ion battery and its research method [J]. Energy Storage Science and Technology, 2022, 11(6): 1822-1833. |
[8] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[9] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[10] | WANG Can, MA Pan, ZHU Guoliang, WEI Shuimiao, YANG Zhilu, ZHANG Zhiyu. Effect of lithium acrylic-coated nature graphite on its electrochemical properties [J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. |
[11] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[12] | Guangyu CHENG, Xinwei LIU, Yueni MEI, Honghui GU, Cheng YANG, Ke WANG. Capacity fading analysis of lithium-ion battery after high temperature storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. |
[13] | Biao MA, Chunjing LIN, Lei LIU, Xiaole MA, Tianyi MA, Shiqiang LIU. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600. |
[14] | Yanwen DAI, Aiqing YU. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation [J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. |
[15] | Chunjing LIN, Danhua LI, Haoran WEN, Tianyi MA, Hong CHANG, Peixiang CHANG, Haiqiang LI, Shiqiang LIU. Research on swelling force characteristics of power battery during charging [J]. Energy Storage Science and Technology, 2022, 11(5): 1627-1633. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||